Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner

Author(s):  
Martin Kro¨ner ◽  
Jassin Fritz ◽  
Thomas Sattelmayer

Flame flashback from the combustion chamber into the mixing zone limits the reliability of swirl stabilized lean premixed combustion in gas turbines. In a former study, the combustion induced vortex breakdown (CIVB) has been identified as a prevailing flashback mechanism of swirl burners. The present study has been performed to determine the flash-back limits of a swirl burner with cylindrical premixing tube without centerbody at atmospheric conditions. The flashback limits, herein defined as the upstream flame propagation through the entire mixing tube, have been detected by a special optical flame sensor with a high temporal resolution. In order to study the effect of the relevant parameters on the flashback limits, the burning velocity of the fuel has been varied using four different natural gas-hydrogen-mixtures with a volume fraction of up to 60% hydrogen. A simple approach for the calculation of the laminar flame speeds of these mixtures is proposed which is used in the next step to correlate the experimental results. In the study, the preheat temperature of the fuel mixture was varied from 100 °C to 450 °C in order to investigate influence of the burning velocity as well as the density ratio over the flame front. Moreover, the mass flow rate has been modified in a wide range as an additional parameter of technical importance. It was found that the quenching of the chemical reaction is the governing factor for the flashback limit. A Peclet number model was successfully applied to correlate the flashback limits as a function of the mixing tube diameter, the flow rate and the laminar burning velocity. Using this model, a quench factor can be determined for the burner, which is a criterion for the flashback resistance of the swirler and which allows to calculate the flashback limit for all operating conditions on the basis of a limited number of flashback tests.

2003 ◽  
Vol 125 (3) ◽  
pp. 693-700 ◽  
Author(s):  
M. Kro¨ner ◽  
J. Fritz ◽  
T. Sattelmayer

Flame flashback from the combustion chamber into the mixing zone limits the reliability of swirl stabilized lean premixed combustion in gas turbines. In a former study, the combustion induced vortex breakdown (CIVB) has been identified as a prevailing flashback mechanism of swirl burners. The present study has been performed to determine the flashback limits of a swirl burner with cylindrical premixing tube without centerbody at atmospheric conditions. The flashback limits, herein defined as the upstream flame propagation through the entire mixing tube, have been detected by a special optical flame sensor with a high temporal resolution. In order to study the effect of the relevant parameters on the flashback limits, the burning velocity of the fuel has been varied using four different natural gas-hydrogen-mixtures with a volume fraction of up to 60% hydrogen. A simple approach for the calculation of the laminar flame speeds of these mixtures is proposed which is used in the next step to correlate the experimental results. In the study, the preheat temperature of the fuel mixture was varied from 100°C to 450°C in order to investigate influence of the burning velocity as well as the density ratio over the flame front. Moreover, the mass flow rate has been modified in a wide range as an additional parameter of technical importance. It was found that the quenching of the chemical reaction is the governing factor for the flashback limit. A Peclet number model was successfully applied to correlate the flashback limits as a function of the mixing tube diameter, the flow rate and the laminar burning velocity. Using this model, a quench factor can be determined for the burner, which is a criterion for the flashback resistance of the swirler and which allows to calculate the flashback limit for all operating conditions on the basis of a limited number of flashback tests.


Author(s):  
Kamran Siddiqui ◽  
Wajid A. Chishty

For gas turbines burning liquid fuels, improving fuel spray and combustion characteristics are of paramount importance to reduce emission of pollutants, improve combustor efficiency and adapt to a range of alternative fuels. Effervescent atomization technique, which involves the bubbling of an atomizing gas through aerator holes into the liquid fuel stream, has the potential to give the required spray quality for gas turbine combustion. Bubbling of the liquid stream is presently used in a wide range of other applications as well such as spray drying, waste-water treatment, chemical plants, food processing and bio- and nuclear-reactors. In order to optimize control of the required aeration quality and thus the resulting spray quality over a wide range of operating conditions, it is important that the dynamics of bubble formation, detachment and downstream transport are well understood under these circumstances. The paper reports on an experimental study conducted to investigate the dynamics of gas bubbles in terms of bubble detachment frequency when injected from an orifice that is subjected to a liquid cross-flow. The experiments were conducted over a range of gas and liquid flow rates and at various orientations of the liquid channel. Analyses presented here are based on shadowgraph images of two-phase flow, acquired using a high speed camera and a low intensity light source. An image processing algorithm was developed for the detection and characterization of the bubble dynamics. Results show that bubble detachment frequency is a function of both liquid cross-flow rate and the gas-to-liquid flow rate ratio.


2005 ◽  
Vol 127 (5) ◽  
pp. 1029-1037 ◽  
Author(s):  
L. O. Schunk ◽  
G. F. Nellis ◽  
J. M. Pfotenhauer

Growing interest in larger scale pulse tubes has focused attention on optimizing their thermodynamic efficiency. For Stirling-type pulse tubes, the performance is governed by the phase difference between the pressure and mass flow, a characteristic that can be conveniently adjusted through the use of inertance tubes. In this paper we present a model in which the inertance tube is divided into a large number of increments; each increment is represented by a resistance, compliance, and inertance. This model can include local variations along the inertance tube and is capable of predicting pressure, mass flow rate, and the phase between these quantities at any location in the inertance tube as well as in the attached reservoir. The model is verified through careful comparison with those quantities that can be easily and reliably measured; these include the pressure variations along the length of the inertance tube and the mass flow rate into the reservoir. These experimental quantities are shown to be in good agreement with the model’s predictions over a wide range of operating conditions. Design charts are subsequently generated using the model and are presented for various operating conditions in order to facilitate the design of inertance tubes for pulse tube refrigerators. These design charts enable the pulse tube designer to select an inertance tube geometry that achieves a desired phase shift for a given level of acoustic power.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879087 ◽  
Author(s):  
Yinli Xiao ◽  
Zhibo Cao ◽  
Changwu Wang

The objective of this study is to gain a fundamental understanding of the flow-field and flame behaviors associated with a low-swirl burner. A vane-type low-swirl burner with different swirl numbers has been developed. The velocity field measurements are carried out with particle image velocimetry. The basic flame structures are characterized using OH radicals measured by planar laser-induced fluorescence. Three combustion regimes of low-swirl flames are identified depending on the operating conditions. For the same low-swirl injector under atmospheric conditions, attached flame is first observed when the incoming velocity is too low to generate vortex breakdown. Then, W-shaped flame is formed above the burner at moderate incoming velocity. Bowl-shaped flame structure is formed as the mixture velocity increases until it extinct. Local extinction and relight zones are observed in the low-swirl flame. Flow-field features and flame stability limits are obtained for the present burner.


Author(s):  
R. Friso ◽  
N. Casari ◽  
M. Pinelli ◽  
A. Suman ◽  
F. Montomoli

Abstract Gas turbines (GT) are often forced to operate in harsh environmental conditions. Therefore, the presence of particles in their flow-path is expected. With this regard, deposition is a problem that severely affects gas turbine operation. Components’ lifetime and performance can dramatically vary as a consequence of this phenomenon. Unfortunately, the operating conditions of the machine can vary in a wide range, and they cannot be treated as deterministic. Their stochastic variations greatly affect the forecasting of life and performance of the components. In this work, the main parameters considered affected by the uncertainty are the circumferential hot core location and the turbulence level at the inlet of the domain. A stochastic analysis is used to predict the degradation of a high-pressure-turbine (HPT) nozzle due to particulate ingestion. The GT’s component analyzed as a reference is the HPT nozzle of the Energy-Efficient Engine (E3). The uncertainty quantification technique used is the probabilistic collocation method (PCM). This work shows the impact of the operating conditions uncertainties on the performance and lifetime reduction due to deposition. Sobol indices are used to identify the most important parameter and its contribution to life. The present analysis enables to build confidence intervals on the deposit profile and on the residual creep-life of the vane.


Author(s):  
K. Singh ◽  
M. Sharabi ◽  
R. Jefferson-Loveday ◽  
S. Ambrose ◽  
C. Eastwick ◽  
...  

Abstract In the case of aero-engine, thin lubricating film servers dual purpose of lubrication and cooling. Prediction of dry patches or lubricant starved region in bearing or bearing chambers are required for safe operation of these components. In the present work thin liquid film flow is numerically investigated using the framework of the Eulerian thin film model (ETFM) for conditions which exhibit partial wetting phenomenon. This model includes a parameter that requires adjustment to account for the dynamic contact angle. Two different experimental data sets have been used for comparisons against simulations, which cover a wide range of operating conditions including varying the flow rate, inclination angle, contact angle, and liquid-gas surface tension coefficient. A new expression for the model parameter has been proposed and calibrated based on the simulated cases. This is employed to predict film thickness on a bearing chamber which is subjected to a complex multiphase flow. From this study, it is observed that the proposed approach shows good quantitative comparisons of the film thickness of flow down an inclined plate and for the representative bearing chamber. A comparison of model predictions with and without wetting and drying capabilities is also presented on the bearing chamber for shaft speed in the range of 2,500 RPM to 10,000 RPM and flow rate in the range of 0.5 liter per minute (LPM) to 2.5 LPM.


Author(s):  
Andrew Moffat ◽  
Richard Green ◽  
Calum Ferguson ◽  
Brent Scaletta

Abstract There is a drive towards a broader range of fuels in industrial gas turbines, with higher levels of sulphur and potentially hydrogen. Due to these harsher environments, there is also a drive for corrosion resistant alloys and coatings. A number of key corrosion resistant superalloys, which are being employed to cope with these evolving conditions, exhibit primary creep. It is therefore imperative that fundamental material models, such as those for creep deformation, are developed to ensure they can accurately predict the material response to evolving operating conditions. The requirements for a creep model are complex. The model must be able to: predict forward creep deformation in regions dominated by primary loads (such as pressure); predict stress relaxation in regions dominated by secondary loads (such as differential thermal expansion); predict the effects of different creep hardening mechanisms. It is also clear that there is an interaction between fatigue and creep. With flexible operation, this interaction can be significant and should be catered for in lifing methods. A model that has the potential to account for the effect of plasticity on creep, and creep on plasticity is therefore desirable. In previous work the authors presented the concept for a backstress model to predict creep strain rates in superalloys. This model was fitted to a limited dataset at a single temperature. The approach was validated using simple creep-dwell tests at the same temperature. This paper expands on the previous work in several ways: 1) The creep model has been fitted over a wide range of temperatures. Including the effect of temperature in complex creep models presents a number of difficulties in model fitting and these are explored. 2) The model was fitted to constant load (forward creep) and constant strain (stress relaxation) tests since any creep model should be able to predict both forms of creep deformation. However, these are often considered separately due to the difficulty of fitting models to two different datasets. 3) The creep deformation model was validated on stress change tests to ensure the creep deformation response can cope with changes in response variables. 4) The approach was validated using creep-fatigue tests to show that the creep deformation model, in addition to our established fatigue models, can predict damage in materials under complex loading.


Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Savino Depalo ◽  
Pio Astrua ◽  
...  

Abstract The overall fraction of the power produced by renewable sources in the energy market has significantly increased in recent years. The power output of most of these clean sources is intrinsically variable. At present day and most likely in the upcoming future, due to the lack of inexpensive and reliable large energy storage systems, conventional power plants burning fossil fuels will still be part of the energy horizon. In particular, power generators able to promptly support the grid stability, such as gas turbines, will retain a strategic role. This new energy scenario is pushing gas turbine producers to improve the flexibility of their turbomachines, increasing the need for reliable numerical tools adopted to design and validate the new products also in operating conditions far from the nominal one. Especially when dealing with axial compressors, i.e. machines experiencing intense adverse pressure gradients, complex flow structures and severe secondary flows, CFD modelling of offdesign operation can be a real challenge. In this work, a state-of-the art CFD framework for RANS analysis of axial compressors is presented. The various aspects involved in the whole setup are discussed, including boundary conditions, meshing strategies, mixing planes modelling, tip clearance treatment, shroud leakages and turbulence modelling. Some experiences about the choice of these aspects are provided, derived from a long-date practice on this kind of turbomachines. Numerical results are reported for different full-scale compressors of the Ansaldo Energia fleet, covering a wide range of operating conditions. Furthermore, details about the capability of the setup to predict compressor performance and surge-margin have been added to the work. In particular, the setup surge-margin prediction has been evaluated in an operating condition in which the turbomachine experiences experimental stall. Finally, thanks to several on-field data available at different corrected speeds for operating conditions ranging from minimum to full load, a comprehensive validation of the presented numerical framework is also included in the paper.


Sign in / Sign up

Export Citation Format

Share Document