Development of the 8000 kW Class Hybrid Gas Turbine

Author(s):  
Hitoshi Nagata ◽  
Wataru Karasawa ◽  
Yoshihiro Ichikawa ◽  
Sazo Tsuruzono ◽  
Takero Fukudome

Based on the successful result of the Japanese national project for 300 kW class ceramic gas turbine development (this project was finished in March 1999), the New Energy and Industrial Technology Development Organization (NEDO) contract project “Research and Development on Practical Industrial Co-generation Technology”, funded by the Ministry of Economy, Trade and Industry (METI), started in August 1999. This project is a five-year plan until the end of the 2003 fiscal year. The objective of this project is to encourage prompt industrial applications of co-generation technology that employs a hybrid gas turbine (HGT; using both metal and ceramic parts in its high-temperature section) by confirming its soundness and reliability. The development activities are performed through ceramic material evaluation test and long-term operation test for the HGT of the medium size (8,000-kW class). It is expected that the development can realize low pollution and reducing the emission of CO2 with highly efficient use of energy. To grasp the material characteristic of the ceramic, the tensile creep rupture test, cyclic fatigue test, sub-critical crack growth test, and exposure test had been carried out. Sub element tests, such as Sector Model Text and Pre-test were carried out prior to the operation study. The operation study was started in the 2002 fiscal year. The operation tests to 5/8-load (about 5,000-kW) had been carried out as of February 2003. This paper gives the progress of the developments of the HGT.


Author(s):  
Ryozo Tanaka ◽  
Testuo Tastumi ◽  
Yoshihiro Ichikawa ◽  
Koji Sanbonsugi

Based on the successful results of the Japanese national project for 300 kW ceramic gas turbine(CGT302) development (this project was finished in March 1999), the Ministry of International Trade and Industry (MITI) started “Research and Development on Practical Industrial Co-generation Technology” project in August 1999. The objective of this project is to encourage prompt industrial applications of co-generation technology that employs hybrid gas turbines (HGT; using both metal and ceramic parts in its high-temperature section) by confirming its soundness and reliability. The development activities are performed through material evaluation tests and long-term operation tests for the HGT of the medium size (8,000-kW class). It is expected that the development can realize low pollution and reducing the emission of CO2 with highly efficient use of energy. The HGT will be developed by applying ceramic components to an existing commercial 7,000-kW class gas turbine. The development targets are thermal efficiency of 34% or higher, output of 8,000-kW class, inlet temperature of 1250deg-C, and 4,000hrs of operation period for confirmation of reliability. The HGT for long-term evaluation tests and the test plant are under development. This paper gives the summary of last year’s developments in the HGT project.



Author(s):  
Hirotake Kobayashi ◽  
Tetsuo Tatsumi ◽  
Takashi Nakashima ◽  
Isashi Takehara ◽  
Yoshihiro Ichikawa

In Japan, from the point of view of energy saving and environmental protection, a 300kW Ceramic Gas Turbine (CGT) Research and Development program started in 1988 and is still continuing as a part of “the New Sunshine Project” promoted by the Ministry of International Trade and Industry (MITT). The final target of the program is to achieve 42% thermal efficiency at 1350°C of turbine inlet temperature (TIT) and to keep NOx emissions below present national regulations. Under contract to the New Energy and Industrial Technology Development Organization (NEDO), Kawasaki Heavy Industries, Ltd. (KHI) has been developing the CGT302 with Kyocera Corporation and Sumitomo Precision Products Co., Ltd. By the end of the fiscal year 1996, the CGT302 achieved 37.0% thermal efficiency at 1280°C of TIT. In 1997, TIT reached 1350°C and a durability operation for 20 hours at 1350°C was conducted successfully. Also fairly low NOx was proved at 1300°C of TIT. In January 1998, the CGT302 has achieved 37.4% thermal efficiency at 1250°C TIT. In this paper, we will describe our approaches to the target performance of the CGT302 and current status.



2006 ◽  
Vol 317-318 ◽  
pp. 481-486 ◽  
Author(s):  
Takero Fukudome ◽  
Sazo Tsuruzono ◽  
Tetsuo Tatsumi ◽  
Yoshihiro Ichikawa ◽  
Tohru Hisamatsu ◽  
...  

An 8000 kW class Hybrid Gas Turbine (HGT) project, administered by the New Energy and Industrial Technology Development Organization (NEDO), was completed in March 2004. The targets of this project were improvement in thermal efficiency and output power by using ceramic components, and early commercialization of the gas turbine system. The ceramic components were used for stationary parts subjected to high temperature. It became clear that silicon nitride material showed significant recession under combustion gas. Kyocera and Central Research Institute of Electric Power Industry developed new EBCs to suppress this recession. These EBCs were evaluated by exposure test, heat cycle test and actual HGT engine test. One of the EBCs showed slight defects after the actual engine tests. However, all EBCs showed high corrosion resistance and good adhesion. It was confirmed that the all EBCs worked effectively.



Author(s):  
Sazo Tsuruzono ◽  
Makoto Yoshida ◽  
Toshifumi Kubo ◽  
Takashi Ono ◽  
Takero Fukudome

An 8000 kW class hybrid gas turbine (HGT) project, administered by the New Energy and Industrial Technology Development Organization (NEDO) and sponsored by the Ministry of International Trade and Industry (MITI), has been started in July 1999 in Japan[1]. The target of this project is improvement in thermal efficiency and output power by using ceramic components, and earlier commercialization of the gas turbine system. Ceramic components are used for stationary parts subjected to high temperature, such as combustor liners, transition ducts, and first stage turbine nozzles. The gas turbine development was conducted in cooperation with Kawasaki Heavy Industries, Ltd. (KHI). Kyocera started a study on fabricating the ceramic HGT components after evaluating their shape, placement, and fabrication methods. For these ceramic components, we are using the SN282 silicon nitride material developed and used for ceramic gas turbine components in the previous ceramic gas turbine project (300kW CGT)[2-4]. We have started to accumulate the strength evaluation data, using test bars cut from the aforementioned components, and begun long term tensile creep testing to confirm the reliability of the ceramic components.



2000 ◽  
Author(s):  
Emiliano Cioffarelli ◽  
Enrico Sciubba

Abstract A hybrid propulsion system of new conception for medium-size passenger cars is described and its preliminary design developed. The system consists of a turbogas set operating at fixed rpm, and a battery-operated electric motor that constitutes the actual “propulsor”. The battery pack is charged by the thermal engine which works in an electronically controlled on/off mode. Though the idea is not entirely new (there are some concept cars with similar characteristics), the present study has important new aspects, in that it bases the sizing of the thermal engine on the foreseen “worst case” vehicle mission (derived from available data on mileage and consumption derived from road tests and standard EEC driving mission cycles) that they can in fact be accomplished, and then proceeds to develop a control strategy that enables the vehicle to perform at its near–peak efficiency over a wide range of possible missions. To increase the driveability of the car, a variable-inlet vane system is provided for the gas turbine. After developing the mission concept, and showing via a thorough set of energy balances (integrated over various mission profiles), a preliminary sizing of the turbogas set is performed. The results of this first part of the development program show that the concept is indeed feasible, and that it has important advantages over both more traditional (Hybrid Vehicles powered by an Internal Combustion Engine) and novel (All-Electric Vehicle) propulsion systems.



2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.



2016 ◽  
Vol 138 (06) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article discusses various fields where gas turbines can play a vital role. Building engines for commercial jetliners is the largest market segment for the gas turbine industry; however, it is far from being the only one. One 2015 military gas turbine program of note was the announcement of an U.S. Air Force competition for an innovative design of a small turbine engine, suitable for a medium-size drone aircraft. The electrical power gas turbine market experienced a sharp boom and bust from 2000 to 2002 because of the deregulation of many electric utilities. Since then, however, the electric power gas turbine market has shown a steady increase, right up to present times. Coal-fired plants now supply less than 5 percent of the electrical load, having been largely replaced by new natural gas-fired gas turbine power plants. Working in tandem with renewable energy power facilities, the new fleet of gas turbines is expected to provide reliable, on-demand electrical power at a reasonable cost.



Author(s):  
Egil Angeid

The magneto-elastic property of steel shafts makes noncontacting torquementers possible. Early magneto-elastic torquemeters suffered from excessive sensitivity to variations in airgap and shaft temperature. These drawbacks have been eliminated in the Torductor® torquemeter, which has been very successful in low-speed industrial applications. In gas turbine applications, some special problems are encountered. These problems, and ways to minimize them, are discussed.



Author(s):  
John Hartranft ◽  
Bruce Thompson ◽  
Dan Groghan

Following the successful development of aircraft jet engines during World War II (WWII), the United States Navy began exploring the advantages of gas turbine engines for ship and boat propulsion. Early development soon focused on aircraft derivative (aero derivative) gas turbines for use in the United States Navy (USN) Fleet rather than engines developed specifically for marine and industrial applications due to poor results from a few of the early marine and industrial developments. Some of the new commercial jet engine powered aircraft that had emerged at the time were the Boeing 707 and the Douglas DC-8. It was from these early aircraft engine successes (both commercial and military) that engine cores such as the JT4-FT4 and others became available for USN ship and boat programs. The task of adapting the jet engine to the marine environment turned out to be a substantial task because USN ships were operated in a completely different environment than that of aircraft which caused different forms of turbine corrosion than that seen in aircraft jet engines. Furthermore, shipboard engines were expected to perform tens of thousands of hours before overhaul compared with a few thousand hours mean time between overhaul usually experienced in aircraft applications. To address the concerns of shipboard applications, standards were created for marine gas turbine shipboard qualification and installation. One of those standards was the development of a USN Standard Day for gas turbines. This paper addresses the topic of a Navy Standard Day as it relates to the introduction of marine gas turbines into the United States Navy Fleet and why it differs from other rating approaches. Lastly, this paper will address examples of issues encountered with early requirements and whether current requirements for the Navy Standard Day should be changed. Concerning other rating approaches, the paper will also address the issue of using an International Organization for Standardization, that is, an International Standard Day. It is important to address an ISO STD DAY because many original equipment manufacturers and commercial operators prefer to rate their aero derivative gas turbines based on an ISO STD DAY with no losses. The argument is that the ISO approach fully utilizes the power capability of the engine. This paper will discuss the advantages and disadvantages of the ISO STD DAY approach and how the USN STD DAY approach has benefitted the USN. For the future, with the advance of engine controllers and electronics, utilizing some of the features of an ISO STD DAY approach may be possible while maintaining the advantages of the USN STD DAY.



2021 ◽  
Vol 1983 (1) ◽  
pp. 012006
Author(s):  
Lianling Ren ◽  
Ruiguo Zhu ◽  
Lin Liao ◽  
Youjie Zhou


Sign in / Sign up

Export Citation Format

Share Document