Development of a Heavy Duty GT Syngas Burner for IGCC Power Plant in Order to Enlarge the GT Operating Conditions

Author(s):  
Federico Bonzani ◽  
Paolo Gobbo

In order to increase the fuel flexibility of the current design of the SynGas burner [4,5,6], Ansaldo Energia, since the growing requests of the market, performed a R&D financed project to use the SynGas fuel available as the unique fuel to feed the gas turbine. Therefore the new working condition to be fulfilled by the modified SynGas burner are the following: a) ignition; b) acceleration; c) loading at part load; d) change over from diffusion line to main SynGas line. To fulfill with new requirements, the standard V94.2K burners have been modified in order to operate from ignition up to the change over point with a SynGas mixture provided by the coal gasification process of a typical IGCC plant [7]. After the design phase, a experimental test campaign on the new design burner has been performed at atmospheric pressure. In order to validate the test results carried out at actual engine working conditions a further test campaign has been performed at the high pressure consistent with the test rig technical limitations [2.3]. The paper show the results carried out that are really promising to meet the customer requirements.

Author(s):  
Armin Silaen ◽  
Ting Wang

Numerical simulations of the coal gasification process inside a generic 2-stage entrained-flow gasifier fed with Indonesian coal at approximately 2000 metric ton/day are carried out. The 3D Navier–Stokes equations and eight species transport equations are solved with three heterogeneous global reactions, three homogeneous reactions, and two-step thermal cracking equation of volatiles. The chemical percolation devolatilization (CPD) model is used for the devolatilization process. This study is conducted to investigate the effects of different operation parameters on the gasification process including coal mixture (dry versus slurry), oxidant (oxygen-blown versus air-blown), and different coal distribution between two stages. In the two-stage coal-slurry feed operation, the dominant reactions are intense char combustion in the first stage and enhanced gasification reactions in the second stage. The gas temperature in the first stage for the dry-fed case is about 800 K higher than the slurry-fed case. This calls for attention of additional refractory maintenance in the dry-fed case. One-stage operation yields higher H2, CO and CH4 combined than if a two-stage operation is used, but with a lower syngas heating value. The higher heating value (HHV) of syngas for the one-stage operation is 7.68 MJ/kg, compared with 8.24 MJ/kg for two-stage operation with 75%–25% fuel distribution and 9.03 MJ/kg for two-stage operation with 50%–50% fuel distribution. Carbon conversion efficiency of the air-blown case is 77.3%, which is much lower than that of the oxygen-blown case (99.4%). The syngas heating value for the air-blown case is 4.40 MJ/kg, which is almost half of the heating value of the oxygen-blown case (8.24 MJ/kg).


1978 ◽  
Vol 18 (02) ◽  
pp. 105-116 ◽  
Author(s):  
C.B. Thorsness ◽  
R.B. Rozsa

Abstract One concept for in-situ coal gasification involves fracturing thick, deep, coal seams using chemical explosives. The resultant high-permeability zone then would be ignited and reacted with a steam/ oxygen mixture to produce medium-Btu gas suitable for upgrading to pipeline quality in a surface plant. This paper discusses the calculational modeling and supporting laboratory experiments relating to the gasification process. The primary aim of this preliminary work is to predict and correlate reaction preliminary work is to predict and correlate reaction and thermal-front propagation rates and product gas composition as a function of bed properties and process operating conditions. process operating conditions. Our initial efforts are restricted to onedimensional, transient Darcy flow in a permeable packed bed. The numerical calculations include a packed bed. The numerical calculations include a detailed description of the reacting system chemistry (13 species) with appropriate reaction rates and over-all heat and mass transport in the system. Comparison of calculated results with experimental data from a packed-bed combustion tube shows good agreement for reaction-zone propagation rates and produced-gas compositions. propagation rates and produced-gas compositions. However, the sensitivity of the calculations to other reaction-rate and transport-coefficient models should be investigated. Introduction In-situ coal gasification has received renewed interest recently. It offers four potential advantages over conventional mining and subsequent surface processing of coal: (1) the product gas may be processing of coal:the product gas may be cheaper because of lower capital investment requirements;environmental damage is likely to be lower;hazards to miners are avoided; andit may make possible the exploitation of coal resources too deeply buried for economical recovery by conventional strip or deep mining operations. The Lawrence Livermore Laboratory (LLL) packed-bed concept for coal gasification was packed-bed concept for coal gasification was originated in 1972. Major program funding by the U.S. ERDA began in 1974. The LLL concept is designed to recover medium-Btu gas from the thick, deeply buried, subbituminous coal deposits prevalent in the western U.S. After upgrading in a prevalent in the western U.S. After upgrading in a surface facility the product gas would have sufficiently high energy density to make pipeline distribution attractive economically. The packed-bed concept calls for creating a permeable zone of coal by detonating chemical permeable zone of coal by detonating chemical explosives in an array of drilled boreholes. The top of the resulting permeable zone is supplied and a steam/oxygen reactant mixture is supplied. The oxidation reactions produce a high-temperature zone that propagates through the bed as a slowmoving thermal wave. The thermal wave first dries the coal downstream from the reaction zone and then pyrolyzes (devolatilizes) it, forming a char. The char undergoes further reactions with the steam present. The major products of the over-all process include H2, CO, CH4, and CO2 as gases, process include H2, CO, CH4, and CO2 as gases, and water and tar as liquids. Mathematical modeling and laboratory experimentation have been carried out to increase understanding of the important parameters of the in-situ gasification process. The purpose of this paper is to present a mathematical description of paper is to present a mathematical description of the gasification process, together with results obtained from calculations and laboratory-scale gasification reactor experiments. The long-range goal of our modeling effort is to acquire the ability to predict resource recovery for a variety of different field geometries and operating conditions. This is a multidimensional, multiphase flow problem. The preliminary model described here is a transient, one-dimensional model of the gasification process in a packed bed. The primary reason for its development is to provide a framework in which to test the importance of accurate specification of the large number of physical and chemical processes involved in gasification. This will be accomplished primarily through comparisons with carefully controlled experiments performed in the 1.6-m reactor. SPEJ P. 105


Author(s):  
Xiao Rui ◽  
Baosheng Jin ◽  
Yunquan Xiong ◽  
Yufeng Duan ◽  
Zhaoping Zhong ◽  
...  

Coal gasification process and equipment feasibility research were carried out in a 2 MW thermal input pressurized spout-fluid bed pilot-scale gasifier and a long-time-run test was performed to study the effects of operating parameters on coal partial gasification behaviors. The test results have demonstrated the feasibility of the gasifier to provide suitable fuel gas and residual char for downstream system of 2G PFBC-CC. The concentration of methane decreased at higher gasification temperature due to the secondary cracking of methane while the carbon conversion increased, and the concentration of hydrogen increased with an increase of steam flow rate. The main experimental results were compared with those of pilot-scale facilities in the world.


2013 ◽  
Vol 572 ◽  
pp. 371-374
Author(s):  
Feng Zhang ◽  
Bao Yu Song ◽  
Jia Peng Sun ◽  
Song Zhang

Mechanical seal plays a very important role in rotating machinery for space exploration, but it is very difficult to estimate its friction performance by simulative experiment. In this paper, a experimental system for measuring friction properties of mechanical seal materials used in spacecraft is developed. It is able to provide some adjustable parameters in the experiment, such as environment temperature -60°C~60°C, load 100N~300N, rotational speed of 30r/min~110r/min and atmospheric pressure and high vacuum. Friction coefficients of babbitt graphite M120B and hard alloy YG6 are obtained by the test rig and the experimental results testify that the device can conduct simulative experiment effectively.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1367 ◽  
Author(s):  
Xiao ◽  
Wang ◽  
Zheng ◽  
Qin ◽  
Zhou

A co-gasification process was proposed both for treating alkaline organic wastewater and to promote coal gasification by the alkaline substances in situ. A catalytic gasification model was developed by introducing a catalytic correction factor to describe the catalytic effects quantitatively. An integrated process simulation was carried out using Aspen Plus equipped with FORTRAN subroutines. The model was verified using the root mean square error between the simulation results and experimental data from the literature. Syngas composition, cold gas efficiency, and carbon conversion efficiency were analyzed with respect to different operating conditions (reaction temperature, steam/coal ratio, and equivalence ratio). The optimal conditions are summarized based on a self-sufficient system by using sensitivity analysis: Gasification temperature of 700 °C, steam/coal ratio = 1.0, and equivalence ratio = 0.4.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Peng Jiang ◽  
Dengting Guo ◽  
Xiang Luo ◽  
Mengxia Xu ◽  
Tao Wu

Abstract This research is focused on the gasification performance of coal and its corresponding macerals as well as on the interactions among macerals under typical gasification conditions by Aspen Plus modeling. The synergistic coefficient was employed to show the degree of interactions, while the performance indicators including specific oxygen consumption (SOC), specific coal consumption (SCC), cold gas efficiency (CGE), and effective syngas (CO + H2) content were used to evaluate the gasification process. Sensitivity analyses showed that the parent coal and its macerals exhibited different gasification behaviors at the same operating conditions, such as the SOC and SCC decreased in the order of inertinite > vitrinite > liptinite, whereas CGE changed in the order of liptinite > vitrinite > inertinite. The synergistic coefficients of SOC and SCC for the simulated coals were in the range of 0.94–0.97, whereas the synergistic coefficient of CGE was 1.05–1.13. Moreover, it was found that synergistic coefficients of gasification indicators correlated well with maceral contents. In addition, the increase in temperature was found to promote the synergistic coefficients slightly, whilst at an oxygen to coal mass ratio of 0.8 and a steam to coal mass ratio of 0.8, the highest synergistic coefficient was obtained.


Author(s):  
Margaret P. Proctor ◽  
Irebert R. Delgado

Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufactures’ concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 °F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).


Author(s):  
A. J. Scalzo ◽  
W. T. Sharkey ◽  
W. C. Emmerling

The field conversion of two W501D5 combustion turbines to burn medium BTU fuel gas supplied by a DOW Chemical coal gasification process at Plaquemine, Louisiana resulted in excessive 105 Hz airborne sound and a corresponding unacceptable non-synchronous engine vibration when burning natural gas. A joint Westinghouse and DOW Chemical corrective action program is described including field tests. Test results indicated that the combustion noise phenomenon was related to the strength of the primary air scoop recirculation pattern and its compatibility with the fuel and steam momentum vectors. A design was selected that eliminated the non-synchronous combustion noise generated vibration and reduced the 100 Hz third-octave noise from 115 db to 97 db, an intensity reduction of 64 to 1.


1988 ◽  
Vol 110 (2) ◽  
pp. 289-294 ◽  
Author(s):  
W. N. Shade ◽  
D. W. Legg

Explosive decompression is a phenomenon that can destroy O-ring sealing elements in high-pressure (>3.4 MPa) natural gas compressors during rapid venting to atmospheric pressure. A test rig and procedure have been developed to identify important parameters influencing O-ring seal explosive decompression failure, consistent with utilization of these seals in high-pressure centrifugal compressors. The test rig and procedure are described and comparative test results presented.


Author(s):  
Dan Hasnedl ◽  
Premysl Epikaridis

In turbo-machinery, abradable layers are used to protect sensible components while keeping minimal possible clearances for maximum efficiency. This article describes the experimental comparison of state of the art abradable layers used as steam turbine seals and a new type of abradable layer made of a metallic felt. The comparison is done via abradability and leakage testing. The leakage is also compared to a state of the art analytical formula to show the effect on the thermal cycle calculation. An abradable test rig is presented together with the test method. Test results show the value of the Felt seal compared to other two types at low contact speed area. A steam test rig is also presented. Seal leakage at real operating conditions is evaluated and compared to an analytical formula. The leakage results show some efficiency gap compared to other two types of seals.


Sign in / Sign up

Export Citation Format

Share Document