Feasibility Study of an Innovative Micro Gas Turbine With a Swiss-Roll Recuperator

Author(s):  
Hsin-Yi Shih ◽  
David Wang ◽  
C.-Ron Kuo

Feasibility of an innovative micro gas turbine with heat recuperation has been studied. The proposed core engine has back-to-back rotor configuration formed by a centrifugal-flow compressor and an axial-flow turbine. A newly Swiss-roll recuperator is wrapped around a can-type combustor to recover the exhaust heat, thus reducing the fuel consumption rate and improving the engine thermal efficiency. From the recuperated cycle analysis, thermodynamic requirements at both inlet and outlet of each component were predetermined to evaluate the engine performance. The conceptual design and preliminary analysis to achieve these requirements were made, component-by-component. The thermal design of the Swiss-roll recuperator was also carried out by theoretical analysis, which gives the thermal characteristics of the recupeator, including the trend of effectiveness, thermal requirement of number-of-transfer-unit (NTU) and the preliminary sizing with the number of turns and the width of the flow channels be determined. The characteristics of Swiss-roll recuperator resemble the counter-flow spiral plate heat exchanger and basically have the excellent performance with high effectiveness and low pressure loss. The performance of the proposed micro gas turbine was investigated, and potentially a compact micro gas turbine with thermal efficiency higher than 20% is possible for the power output less than 10 kW.

Author(s):  
W. Peter Sarnacki ◽  
Travis T. Wallace ◽  
Paul A. Wlodkowski

Thermoelectric materials, utilizing the Seebeck effect, have the potential of augmenting the thermal efficiency of all types of internal combustion engines and in particular, a simple cycle gas turbine, as well as the combined steam and gas turbine cycles. Current research and development at Maine Maritime Academy (MMA) has successfully demonstrated the conversion of waste exhaust heat into electrical power from a marine diesel and micro gas turbine. While the automotive industry has been investigating the utility of thermoelectric materials in passenger vehicles for a number of years, the authors believe that the marine and stationary power industries would be the significant beneficiaries of this technology given economies of scale and greater ability to generate higher thermal gradients. This paper examines both the application of thermoelectric generation on marine diesel propulsion systems, and a micro gas turbine. Research and development at MMA highlights the ability to supersede existing thermal efficiency barriers encountered by each power producer.


Author(s):  
Kenichiro Mochizuki ◽  
Satoshi Shibata ◽  
Umeo Inoue ◽  
Toshiaki Tsuchiya ◽  
Hiroko Sotouchi ◽  
...  

As the energy consumption has been increasing rapidly in the commercial sector in Japan, the market potential for the micro gas turbine is significant and it will be realized substantially if the thermal efficiency is improved. One of measures is to introduce the steam injection system using the steam generated by the heat recovery steam generator. Steam injection tests have been carried out using a micro gas turbine (Capstone C60). Test results showed that key performance parameters such as power output, thermal efficiency and emissions were improved by the steam injection. The stable operation of micro gas turbine with steam injection was confirmed under various operating conditions. Consequently, a micro gas turbine based co-generation package with steam injection driven by a heat recovery steam generator (HRSG) with supplementary firing is proposed.


Aerospace ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 55 ◽  
Author(s):  
James Large ◽  
Apostolos Pesyridis

In this study, the on-going research into the improvement of micro-gas turbine propulsion system performance and the suitability for its application as propulsion systems for small tactical UAVs (<600 kg) is investigated. The study is focused around the concept of converting existing micro turbojet engines into turbofans with the use of a continuously variable gearbox, thus maintaining a single spool configuration and relative design simplicity. This is an effort to reduce the initial engine development cost, whilst improving the propulsive performance. The BMT 120 KS micro turbojet engine is selected for the performance evaluation of the conversion process using the gas turbine performance software GasTurb13. The preliminary design of a matched low-pressure compressor (LPC) for the proposed engine is then performed using meanline calculation methods. According to the analysis that is carried out, an improvement in the converted micro gas turbine engine performance, in terms of thrust and specific fuel consumption is achieved. Furthermore, with the introduction of a CVT gearbox, the fan speed operation may be adjusted independently of the core, allowing an increased thrust generation or better fuel consumption. This therefore enables a wider gamut of operating conditions and enhances the performance and scope of the tactical UAV.


Author(s):  
T. Sugimoto ◽  
K. Ikesawa ◽  
S. Kajita ◽  
W. Karasawa ◽  
T. Kojima ◽  
...  

The M7A-01 gas turbine is a newly developed 6 MW class single-shaft machine. With its high simple-cycle efficiency and high exhaust gas temperature. it is particularly suited for use in electric power generation and co-generation applications. An advanced high efficiency axial-flow compressor, six can-type combustors, and a high inlet temperature turbine has been adopted. This results in a high thermal efficiency of 31.5% at the gas turbine output shaft and a high overall thermal efficiency of co-generation system. In addition, low NOx emissions from the combustors and a long service life permit long-term continuous operation under various environmental limitations. The results of the full load shop test, accelerated cyclic endurance test and extra severity tests verified that the performance, the mechanical characteristics and the emission have satisfied the initial design goals.


Author(s):  
Norihiko Iki ◽  
Takahiro Inoue ◽  
Takayuki Matsunuma ◽  
Hiro Yoshida ◽  
Satoshi Sodeoka ◽  
...  

In order to develop a micro gas turbine with high turbine inlet temperature and thermal efficiency, a series of running tests has been carried out. J-850 jet engine (Sophia Precision Co., Ltd.) was chosen as a baseline machine. The turbine nozzle and the rotor are replaced by type SN-01 (Otsuka Ceramics Co., Ltd.) and type SN-235 (Kyocera Corporation) ceramic elements, respectively. By using type 3a engine, we succeeded one-hour running test of the engine without cooling and severe damages. The turbine inlet temperature was higher than 1000 °C. The rotating speed was about 120,000 rpm. Performances of the type 3a engine (with ceramic nozzle and rotor) and the type 1 (with Inconel alloy nozzle and ceramic rotor) were compared as follows: At the same rotation speed, turbine inlet temperature of the type 3a became higher than that of the type 1. Simultaneously, fuel consumption of type 3a was larger than that of the type 1. Thrust of the type 3a was slightly larger than that of the type 1. Those results imply that the thermal efficiency of type 3a is slightly, 2%, lower than that of the type 1. The present sealing configurations between ceramic nozzle-vanes and their holder plate and ceramic rotor-housing and metal combustion chamber were found to work well.


1981 ◽  
Vol 103 (4) ◽  
pp. 772-775 ◽  
Author(s):  
Akifumi Hori ◽  
Kazuo Takeya

A new reheat gas turbine system is being developed as a national project by the “Engineering Research Association for Advanced Gas Turbines” of Japan. The machine consists of two axial flow compressors, three turbines, intercooler, combustor and reheater. The pilot plant is expected to go into operation in 1982, and a prototype plant will be set up in 1984. The major objective of this reheat gas turbine is application to a combined cycle power plant, with LNG burning, and the final target of combined cycle thermal efficiency is to be 55 percent (LHV).


Author(s):  
Norihiko Iki ◽  
Hirohide Furutani ◽  
Sanyo Takahashi

The mirror gas turbine proposed by Tsujikawa and Fujii extends the applications of turbo machinery. The characteristic component of a mirror gas turbine is a thermal generator, which is a kind of “inverted Brayton cycle”. The operating sequence of the thermal generator is reverse that of an ordinary gas turbine, namely, the hot working fluid is first expanded, and then cooled, compressed, and finally exhausted. In this work, we investigated the theoretical feasibility of inserting a thermal generator to a small reheat gas turbine of 30–100kW classes. Using process simulator software, we calculated and compared the thermal efficiency of this reheat gas turbine to that of a micro gas turbine under several conditions, turbine inlet temperature. This comparison showed that the performances of the both gas turbines are significantly influenced by the performance of the heat exchanger used for the recuperator. The efficiency of the micro gas turbine is also improved by using water injection into the compressor to cool the inlet gas. The resulting thermal efficiency of this reheat gas turbine is about 7% higher than that of a micro gas turbine with the same power unit.


Author(s):  
Selcuk Can Uysal ◽  
James B. Black

Abstract During the operation of an industrial gas turbine, the engine deviates from its new condition performance because of several effects including dirt build-up, compressor fouling, material erosion, oxidation, corrosion, turbine blade burning or warping, thermal barrier coating (TBC) degradation, and turbine blade cooling channel clogging. Once these problems cause a significant impact on engine performance, maintenance actions are taken by the operators to restore the engine to new performance levels. It is important to quantify the impacts of these operational effects on the key engine performance parameters such as power output, heat rate and thermal efficiency for industrial gas turbines during the design phase. This information can be used to determine an engine maintenance schedule, which is directly related to maintenance costs during the anticipated operational time. A cooled gas turbine performance analysis model is used in this study to determine the impacts of the TBC degradation and compressor fouling on the engine performance by using three different H-Class gas turbine scenarios. The analytical tool that is used in this analysis is the Cooled Gas Turbine Model (CGTM) that was previously developed in MATLAB Simulink®. The CGTM evaluates the engine performance using operating conditions, polytropic efficiencies, material properties and cooling system information. To investigate the negative impacts on engine performance due to structural changes in TBC material, compressor fouling, and their combined effect, CGTM is used in this study for three different H-Class engine scenarios that have various compressor pressure ratios, turbine inlet temperatures, and power and thermal efficiency outputs; each determined to represent different classes of recent H-Class gas turbines. Experimental data on the changes in TBC performance are used as an input to the CGTM as a change in the TBC Biot number to observe the impacts on engine performance. The effect of compressor fouling is studied by changing the compressor discharge pressures and polytropic compressor efficiencies within the expected reduction ranges. The individual and combined effects of compressor fouling and TBC degradation are presented for the shaft power output, thermal efficiency and heat rate performance parameters. Possible improvements for the designers to reduce these impacts, and comparison of the reductions in engine performance parameters of the studied H-Class engine scenarios are also provided.


Author(s):  
Farnosh Dalili ◽  
Mats Westermark

This paper examines the performance of gas turbine cycles operating with a mixture of air and water vapor. Special attention is paid to the humidification tower, where the water vapor is added to the air. The experiments in this study have been carried out in the first evaporative gas turbine pilot plant located at Lund Institute of Technology in the southern part of Sweden. This pilot plant is based on a Volvo VT600 gas turbine with a design load of 600 kW. The compressor pressure is just above 8 bars and the intake air-flow is 3.4 kg/s. Roughly 70 percent of the compressed air is humidified in the humidification tower, which is the only humidifying device. The tower diameter is 0.7 m and the total flexible packing height is 0.9 m of a stainless steel structured packing with a specific surface area of 240 m2/m3. The number of mass transfer units in the humidifier was experimentally determined to about 3 for a packing height of 0.45 m. The height of a transfer unit from the literature data for the packing is predicted to be 0.24 m. With a packing height of 0.45 m, only about 2 transfer units are expected from the packing. However, the droplet zones above and below the packing contribute about 1 transfer unit. Thus, it is concluded that the mass transfer performance of the packing is adequately predicted by literature data. Equations are provided to adjust the height of a transfer unit for other pressures and temperatures. For full-scale plants operating at higher pressures and temperatures it is suggested that the high quality exhaust heat, (temperatures above the boiling point) is recovered in a boiler and injected as steam. The remaining part of the exhaust heat, (temperatures below the boiling point) is used to produce hot water for a relatively small humidification tower using only a portion of the compressed air flow.


Sign in / Sign up

Export Citation Format

Share Document