CFD Simulation of Water Injection in GT Inlet Duct Using Spray Experimentally Tuned Data: Nozzle Spray Simulation Model and Results for an Application to a Heavy-Duty Gas Turbine

Author(s):  
Michele Bianchi ◽  
Mustapha Chaker ◽  
Andrea De Pascale ◽  
Antonio Peretto ◽  
Pier Ruggero Spina

This study describes an application of Computational Flow Dynamics (CFD) to the two-phase flow problem of water injection into a compressor inlet duct for fogging systems. The paper addresses issues related to the CFD setup and the developed spray simulation model. Water injection is simulated by fitting experimental data on sprays obtained from industrial nozzles. In particular, the initial droplets size distribution is defined in accordance with results of laboratory tests on impaction-pin type nozzles. By using a commercial CFD software, 3D numerical simulations have been carried out on a typical gas turbine inlet duct. The effects of the duct geometry, filter and silencer on the duct internal air flow-field were analyzed. Finally, the effect of water injection carried out by means of an array of nozzles in the inlet duct is investigated. The paper presents the CFD two-phase results obtained for the application case under study; the analysis of the compressor bellmouth conditions due to the evaporation phenomenon is included in the paper.

Author(s):  
Hai Zhang ◽  
Qun Zheng ◽  
Mustapha Chaker ◽  
Cyrus Meher-Homji

The air pressure drop over the nozzles manifolds of inlet fogging system and the flow resistance downstream of the nozzle array (manifold) have always been an area of concern and is the object of this paper. Fogging nozzles arrays (involving several hundred nozzles) are mounted on channels and beams, downstream of the inlet filters and affect the pressure drop. The water injection angle, nozzle injection velocities and the progressive evaporation of the water droplets evaporation all influence the inlet pressure seen at the gas turbine inlet. This paper focuses on a numerical simulation investigation of flow resistance (pressure drop) of inlet fogging systems. In this research effort, the inlet duct is meshed in order to compute the pressure drop over the nozzles frames in fogging and non-fogging conditions. First, the resistance coefficients of an air intake filter are obtained by numerical and experimental methods, and then the coefficients are used for the simulation of the inlet duct by considering the filter as a porous media. Effects of nozzle spread pattern and water injection pattern are then modeled. The results indicate that injection velocity and arrangement of nozzles could have significant effects on the pressure drop and intake distortion, which will affect compressor performance. This paper provides a comprehensive analysis of the pressure drop and evaporation of inlet fogging and will be of value to gas turbine inlet fogging system designers and users.


Author(s):  
J. C. Blanton ◽  
W. F. O’Brien

An empirically-based engine simulation model was developed to analyze the operation of a heavy-duty gas turbine on ash-bearing fuel. The effect of the ash in the combustion products on turbine efficiency was determined employing field data. The model was applied to the prediction of the performance of an advanced-cooled turbine engine with a water-cooled first-stage nozzle, when operated with ash-bearing fuels. Experimental data from a turbine simulator rig were used to estimate the expected rates of ash deposit formation in the advanced-cooled turbine engine, so that the results could be compared with those for current engines. The results of the simulations indicate that the rate of decrease in engine power would be 32 percent less in the advanced-cooled engine with water cooling. An improvement in predicted specific fuel consumption performance was also noted, with a rate of increase of 38 percent for the advanced-cooled engine.


Author(s):  
D. E. Brandt ◽  
M. Colas

Following a thorough market analysis, the MS 9001F heavy duty gas turbine has been designed using aerodynamic scaling based on the 60 Hz MS 7001F. Effort put into the design has been shared by the engineering departments of ALSTHOM and GE. This paper discusses the market surveys for large heavy duty gas turbines as well as the basis of design for the MS 9001F, which has been derived from the MS 7001F. Specifically discussed are the role of scaling, the design characteristics of the MS 7001F and the MS 9001F, the results of 7001F prototype testing, the test plan for the MS 9001F, plant lay out possibilities and ratings. The MS 9001F gas turbine uses advanced aircraft engine technology in its design, with a rating based on a firing temperature of 1260°C (2300°F), which is 156°C (280°F) higher and with compressor inlet flow 50% greater than its predecessor, the MS 9001E.


Author(s):  
Cyrus B. Meher-Homji ◽  
Mustapha A. Chaker

Mechanical drive gas turbine can benefit significantly by power augmentation. In the oil and gas, petrochemical and process industries, the reduction in output of mechanical drive gas turbines curtails plant output or throughput. Gas turbines exhibit a drop in power output with an increase in air compressor inlet temperature of the order of 0.7% / °C for heavy duty gas turbines and approximately 1% / °C for aeroderivative turbines. Power augmentation by inlet cooling is an attractive means to minimize production swings. Designing gas turbine driven refrigeration compressors for high ambient temperature swings is also a design challenge due to power limitations at high ambient temperatures and high refrigerant condensing pressures. This paper will address a range of gas turbine inlet cooling techniques, and provide a technical perspective of different inlet cooling approaches. Technical approaches including inlet evaporative cooling, inlet fogging, wet compression, inlet mechanical and absorption chilling are covered. Other approaches such as water injection are briefly discussed. The judicious selection of the dry bulb temperature and coincident relative humidity for the design and selection of the cooling technology is discussed.


1983 ◽  
Vol 105 (1) ◽  
pp. 167-171
Author(s):  
J. C. Blanton ◽  
W. F. O’Brien

An empirically based engine simulation model was developed to analyze the operation of a heavy-duty gas turbine on ash-bearing fuel. The effect of the ash in the combustion products on turbine efficiency was determined employing field data. The model was applied to the prediction of the performance of an advanced-cooled turbine engine with a water-cooled first-stage nozzle, when operated with ash-bearing fuels. Experimental data from a turbine simulator rig were used to estimate the expected rates of ash deposit formation in the advanced-cooled turbine engine, so that the results could be compared with those for current engines. The results of the simulations indicate that the rate of decrease in engine power would be 32 percent less in the advanced-cooled engine with water cooling. An improvement in predicted specific fuel consumption performance was also noted, with a rate of increase of 38 percent for the advanced-cooled engine.


2019 ◽  
pp. 31-38
Author(s):  
Дмитро Вікторович Коновалов ◽  
Галина Олександрівна Кобалава

A cyclic air intercooling application in the compression process in the compressor has a positive effect on the resource of the gas turbine plant (GTP) and on increasing its capacity without reducing the service life. The most promising method of cooling the cyclic air of the GTP, namely contact cooling by using an aerothermopressor, was analyzed in the paper. This heat exchanger is a two-phase jet apparatus in which, due to the removal of heat from the airflow, the air pressure is increased and its cooling occurs. The main problem in the development of the aerothermopressor is to determine the geometric characteristics of the apparatus flow part and the fluid injection system, which allow its effective application for increasing pressure and fluid spraying fine. An analysis was made of the apparatus models operation by using CFD simulation in the ANSYS Fluent software package to determine the aerothermopressor main characteristics of the cyclic air cooling system of the GTP. The calculation method was determined, the turbulence model was selected, the calculation was carried out taking into account the convergence of the results, and the output data were processed and visualized in the CFD-Post in the form of graphs and fields. Based on this, the aerothermopressor design was developed for a WR-21 gas turbine produced by Rolls Royce. At the first stage of the study, a “dry” aerothermopressor was modeled (without water injection into the evaporation chamber). It was found that the decrease in airflow pressure due to friction losses was about 5%. At the second stage of the study, a simulation of the aerothermopressor with water injection into the flow part (at the inlet to the evaporation chamber) was carried out. As a result of thermogasdynamic compression, the increase in the total air pressure at the outlet of the aerothermopressor was 3.1%, and the temperature of the cooled air was decreased by 280 degrees. To ensure effective air compression in the gas turbine compressor, incomplete evaporation of water in the aerothermopressor was considered. It made it possible to obtain finer water spraying at the diffuser outlet, while the average diameter of the water droplet decreased to 2.5 μm.


Author(s):  
F C Mund ◽  
P Pilidis

Online compressor washing is an advanced method to recover power losses caused by compressor blade fouling without incurring the availability penalty of having to shut down the gas turbine engine. Liquid is sprayed into the compressor at full or near full load to wash off particulates accumulated on the compressor surfaces. In particular, the cleaning of the first stage is vital to reinstate the mass flow of the engine, and a uniform fluid distribution is desirable in order to cover the full annulus. To achieve this, washing systems are generally developed empirically. Owing to the variety of intake duct geometries and gas turbine engines, the design of washing systems is generally related to individual power plants. To illustrate the trends of the main influencing parameters, a numerical investigation has been undertaken, based on an application case of a washing system installed in a heavy-duty gas turbine. The parameters studied using computational fluid dynamics (CFD) were airflow reduction, injection location and direction, droplet mass, and injection velocity. The effectiveness of the washing system was evaluated from the fluid distribution at the compressor inlet plane. It has been shown that, depending on the spray nozzle location, different optimum droplet sizes and injection velocities are required. Consequently, the application of different nozzle types is advisable. The operating condition of the engine has a significant effect on the fluid distribution at the compressor inlet and therefore changes in engine mass flow have to be considered when deciding on a washing scheme.


Author(s):  
Sepehr Sanaye ◽  
Hossein Rezazadeh ◽  
Mehrdad Aghazeynali ◽  
Mehrdad Samadi ◽  
Daryoush Mehranian ◽  
...  

Inlet fogging has been noticed widely in recent years as a method of gas turbine air inlet cooling for increasing the power output of gas turbines and combined cycle power plants. To study the effects of inlet fogging on gas turbine performance, in the first step, the evaporation of water droplets in the compressor inlet duct was modeled, and at the end of the inlet duct, the diameter of water droplets were estimated. The results of this process were compared with the results of FLUENT software. In the second step, the droplets which were not evaporated in compressor inlet duct were studied during wet compression in the compressor and the reduction in compressor discharge air temperature was predicted. Finally, the effects of both evaporative cooling in inlet duct, and wet compression in compressor, on the power output, and turbine exhaust temperature of a gas turbine with turbine blade cooling were investigated. These results for various amounts of air bleeding, without and with inlet fogging in the range of (0–2%) overspray are reported.


Author(s):  
Maurizio De Lucia ◽  
Rinaldo Bronconi ◽  
Ennio Carnevale

Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine’s power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.


Author(s):  
Sergey N. Movchan ◽  
Vyacheslav V. Romanov ◽  
Volodymyr N. Chobenko ◽  
Anatoliy P. Shevtsov

The recovery of exhaust gas heat in waste-heat recovery boilers (WHRBs), and the injection of superheated steam into gas turbine combustors form the basis for the development of “Aquarius” type gas turbine units. In November 2003 the first commercial “Aquarius-16” unit with 16 MW power output that was designed and built by Ukrainian specialists was put into operation at “Stavishchenskaya” gas compression station for the “Progress” gas pipeline. The efficiency of the unit is 42.1% at turbine inlet temperature (TIT) of 1358K. To date the unit has accumulated more than 9,500 hours and has saved about 13.5 million m3 of fuel gas compared to units having a similar power output operating in simple cycle configuration. The emission levels, corrected to 15% O2 (by volume) are for NOx, 40–68 mg/Nm3, and CO, 58-10 mg/Nm3. The temperature of gases discharged into atmosphere is not more than 45°C. These figures on efficiency and emission levels, although very good, still leave scope for improvement. The purpose of the paper presented here is to define the development methodology to allow the “AQUARIUS” units to achieve efficiencies of 50% and higher. It is shown that development of “AQUARIUS” units with efficiency of about 50% will require operating at maximum cycle temperature around 1673 K and pressure ratio of 25–35. Further development of the Aquarius units with water injection at the low-pressure compressor inlet, the use of more efficient cooling of the engine gas path components and additional recovery of exhaust gas heat by means of fuel will need to operate at maximum cycle temperatures around 1873 K and pressure ratio of 45–50 in order to generate efficiencies more than 50%.


Sign in / Sign up

Export Citation Format

Share Document