Characterizing the Effect of Radial Vane Height on Flame Migration in an Ultra Compact Combustor

Author(s):  
Kenneth D. LeBay ◽  
Marc D. Polanka ◽  
Richard D. Branam

The Ultra Compact Combustor (UCC) has shown viable merit for significantly improving gas turbine combustor performance. UCC models for small engines can provide centrifugal loading up to 4,000 gs. However, as the scale of the combustor increases, the g-load will necessarily decrease and the radial vane height will increase. Thus, the importance of understanding flame migration over increasing radial vane heights is pivotal to the applicability of this design to larger engine diameters. The Air Force Institute of Technology’s Combustion Optimization and Analysis Laser laboratory studied this effect with a sectional UCC model using three different vane heights. By varying the mass flow rates of the circumferential UCC section, the g-loading was varied from 500–2,000 gs. Two-line Planar Laser Induced Fluorescence at 10Hz was used for 2D temperature profiles. High-speed video at 2kHz was also used for qualitative flame migration characterization. Several cases were studied varying the radial vane height, the circumferential g-load, and the UCC/core mass flow ratio but specifically focusing on the interaction between matching the core mass flow and the core freestream velocity among the different vane heights. Finally, the decreased core flow velocity for the same mass flow weakened the shear layer between the main and cavity flows and this allowed deeper flame migration into the core flow from the UCC. Control of the overall flame migration is the key to produce desirable combustor exit temperature profiles. Increased spans lead to higher velocity gradients and increased flame injection angles at the same mass flow rates. However, at the same core flow velocities and UCC to core flow velocity ratios the flame injection angle was relatively independent of the radial vane height and almost entirely dependent on the core flow velocity alone.

Author(s):  
A. Namet-Allah ◽  
A. M. Birk

The core flow separation in air-air ejectors is significantly affected by the length of the exhaust nozzle. This length was changed by moving the annulus’ center body end 4, 7, and 12 cm upstream and 1 cm downstream of the nozzle inlet. The velocity profiles at the nozzle exit were measured at different mass flow rates and at 10, 20 and 30 degree swirl angles. These measurements were also conducted at two annulus’ center body end positions with elliptical and square shapes, 12 and 7 cm upstream of the nozzle inlet, using two nozzle exit diameters. At 4, 7, and 12 cm upstream and 1 cm downstream of the nozzle inlet, the ejector performance was also measured at ambient temperature and at different flow swirl angles. It was found that the square shape of the annulus’ center body decreased the size of the core flow separation behind the annulus center body compared with the elliptical shape by improving the flatness of the flow velocity at the nozzle exit under different mass flow rates, swirl angles, positions of the annulus’ center body, and nozzle exit diameters. It was seen that moving the end of the annular center body upstream has considerable effects on the size and nature of the core separation behind the annulus’ center body and consequently on the ejector performance. At a zero swirl angle, the ejector pumping ratio slightly increased, decreased, and then increased again by moving the annulus’ center body from 12 cm to 7 cm upstream, from 7 cm to 4 cm upstream, and from 4 cm upstream to 1 cm downstream of the nozzle inlet respectively. These changes in the annulus’ center body position caused the back pressure coefficient to decrease, increase, and then increase again. The same trend in pumping ratio and back pressure was observed for both 10 and 20 degree flow swirl angle conditions when the annulus’ center body was moved as described.


Author(s):  
Taher Halawa ◽  
Mohamed Alqaradawi ◽  
Osama Badr ◽  
Mohamed S. Gadala

This paper focuses on providing better view for the understanding of rotating stall phenomenon in centrifugal compressors by using numerical simulations and presents a study of the role of air injection method in delaying stall inception by using different injection parameters aiming at increasing the efficiency of this method. Results showed that the formation of stall begins at the impeller inlet due to early flow separation at low mass flow rates and due to the increase of the turbulence level and the absence of fluid orientation guidance at the vaneless region. The flow weakness causes back flow that results in the formation of the tip leakage flow which causes stall development with time. Results also showed that using air injection at specified locations at the vaneless shroud surface at injection angle of 20° and with injection mass flow rate of 1.5% of the inlet design mass flow rate, can delay the stall onset to happen at lower mass flow rate about 3.8 kg/s comparing with using injection with angle of 10° with different injection mass flow rates and also comparing with the case of no injection.


1981 ◽  
Vol 103 (3) ◽  
pp. 193-200 ◽  
Author(s):  
M. F. Young ◽  
J. B. Bergquam

Performance characteristics (i.e., system temperatures and mass flow rates) of a thermosyphon solar domestic hot water (SDHW) system that are representative of practical system configurations and sizes are presented. Experimental weather/radiation conditions, collector inlet/outlet temperatures, collector mass flow rates, and storage tank temperature profiles are presented for the same period. These form a consistent set of performance data to which numerical predictions are compared. An indirect method using the storage tank temperatures is used to experimentally determine the thermosyphon mass flow rate. The accuracy of this indirect method is verified by comparison to measurements taken with a turbine flow meter on a pumped SDHW system. System temperatures and mass flow rates are predicted using a general purpose transient SDHW computer program, SHOW (Solar Hot Water). This program contains models for the solar collector, storage tank, and the thermosyphon mass flow rate. The storage tank is modeled as a stratified liquid tank with internode convection and conduction, stored internal energy, heat losses from the tank exterior, and some mixing at the tank inlet/outlet boundaries. Comparisons of predicted collector inlet/outlet temperatures; storage tank temperature profiles, and mass flow rates show agreement with experiments.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Author(s):  
Susheel Singh ◽  
Sumanta Acharya ◽  
Forrest Ames

Flow and heat transfer in a low aspect ratio pin-finned channel, representative of an internally cooled turbine airfoil, is investigated using Large Eddy Simulations (LES). To achieve greater control of surface cooling distribution, a novel approach has been recently proposed in which coolant is injected incrementally through a series of holes located immediately behind a specially designed cutout region downstream of the pin-fins. Sheltering the coolant injection behind the pin-fins avoids the impact of the cross-flow buildup that deflects the impingement jet and isolates the surface from cooling. The longitudinal and transverse spacing of the pin-fins, arranged in a staggered fashion, is X/D = 1.046 and S/D = 1.625, respectively. The aspect ratio (H/D) of pin-fin channel is 0.5. Due to the presence of the sequential jets in the configuration, the local cooling rates can be controlled by controlling the jet-hole diameter which impacts the jet mass flow rate. Hence, four different hole diameters, denoted as Large (L), Medium (M) , Small (S), Petite (P) are tested for impingement holes, and their effects are studied. Several patterns of the hole-size distributions are studied. It is shown that the peak Nusselt number in the stagnation region below the jet correlates directly with the jet-velocity, while downstream the Nusselt numbers correlate with the total mass flow rates or the average channel velocity. The local cooling parameter defined as (Nu/Nu0)(1-ε) correlates with the jet/channel mass flow rates.


Author(s):  
Thomas Ho¨hne ◽  
So¨ren Kliem ◽  
Roman Vaibar

The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the cold leg and downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. This paper presents a matrix of ROCOM experiments in which water with the same or higher density was injected into a cold leg of the reactor model with already established natural circulation conditions at different low mass flow rates. Wire-mesh sensors measuring the concentration of a tracer in the injected water were installed in the cold leg, upper and lower part of the downcomer. A transition matrix from momentum to buoyancy-driven flow experiments was selected for validation of the CFD software ANSYS CFX. A hybrid mesh with 4 million elements was used for the calculations. The turbulence models usually applied in such cases assume that turbulence is isotropic, whilst buoyancy actually induces anisotropy. Thus, in this paper, higher order turbulence models have been developed and implemented which take into account for that anisotropy. Buoyancy generated source and dissipation terms were proposed and introduced into the balance equations for the turbulent kinetic energy. The results of the experiments and of the numerical calculations show that mixing strongly depends on buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation with lower mass flow rates and/or higher density differences. The ECC water falls in an almost vertical path and reaches the lower downcomer sensor directly below the inlet nozzle. Therefore, density effects play an important role during natural convection with ECC injection in PWR and should be also considered in Pressurized Thermal Shock (PTS) scenarios. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.


Sign in / Sign up

Export Citation Format

Share Document