Identification of Eigenmodes and Determination of the Dynamical Behaviour of Open Impellers

Author(s):  
Yves Bidaut ◽  
Urs Baumann

Whenever an open bladed impeller (without shroud) is implemented in a centrifugal compressor a key issue regarding the reliability of the compressor concerns the dynamical behaviour of this impeller. Due to the absence of the shroud this impeller can be operated at high tip speeds, hence allowing for higher volume flow. However the impeller reacts very sensitive to excitations leading to large blade vibrations with potential considerable dynamic stresses. In order to avoid resonance caused by fluctuating pressure distributions due to rotor-stator interactions special attention must be paid to the natural frequencies of the impeller which shall be determined with the highest accuracy possible. Therefore this paper focuses on the identification of the natural frequencies of the impeller first. To validate the finite-element (FE) model extensive measurements of the natural frequencies are performed at standstill. Especially the set-up and results obtained with the Shaker-Laser vibrometer-tests are described in detail and compared to other measurement methods such as the Laser-Scaning-Vibrometry (LSV) and strain gauges. Furthermore the prediction of the dynamic behaviour of the impeller is of considerable importance in the design of turbo compressors. For this purpose comprehensive measurements of the dynamic stress are carried out on the author’s company’s test rig. The paper describes the test arrangement including numerous strain gauges installed in different positions of the blades. The last part of this paper describes a simplified approach for the evaluation of the dynamic stresses in the impeller blade. A substantial list of comprehensive lectures about coupled CFD–structural analysis to determine the dynamic behaviour of impeller blades is available. However, despite of considerable improvement in software and calculation methods in the last years, such analyses are still expensive and require very large capacities. The presented alternative calculation method is based on a harmonic analysis which is calibrated to the measurements and is the base for a further estimation of the life time of the impeller.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Vincenzo Rotondella ◽  
Andrea Merulla ◽  
Andrea Baldini ◽  
Sara Mantovani

This paper presents a comparison between the experimental investigation and the Finite Element (FE) modal analysis of an automotive rear subframe. A modal correlation between the experimental data and the forecasts is performed. The present numerical model constitutes a predictive methodology able to forecast the experimental dynamic behaviour of the structure. The actual structure is excited with impact hammers and the modal response of the subframe is collected and evaluated by the PolyMAX algorithm. Both the FE model and the structural performance of the subframe are defined according to the Ferrari S.p.A. internal regulations. In addition, a novel modelling technique for welded joints is proposed that represents an extension of ACM2 approach, formulated for spot weld joints in dynamic analysis. Therefore, the Modal Assurance Criterion (MAC) is considered the optimal comparison index for the numerical-experimental correlation. In conclusion, a good numerical-experimental agreement from 50 Hz up to 500 Hz has been achieved by monitoring various dynamic parameters such as the natural frequencies, the mode shapes, and frequency response functions (FRFs) of the structure that represent a validation of this FE model for structural dynamic applications.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350001 ◽  
Author(s):  
WILLIAM TOH ◽  
ZISHUN LIU ◽  
TENG YONG NG ◽  
WEI HONG

This work examines the dynamics of nonlinear large deformation of polymeric gels, and the kinetics of gel deformation is carried out through the coupling of existing hyperelastic theory for gels with kinetic laws for diffusion of small molecules. As finite element (FE) models for the transient swelling process is not available in commercial FE software, we develop a customized FE model/methodology which can be used to simulate the transient swelling process of hydrogels. The method is based on the similarity between diffusion and heat transfer laws by determining the equivalent thermal properties for gel kinetics. Several numerical examples are investigated to explore the capabilities of the present FE model, namely: a cube to study free swelling; one-dimensional constrained swelling; a rectangular block fixed to a rigid substrate to study swelling under external constraints; and a thin annulus fixed at the inner core to study buckling phenomena. The simulation results for the constrained block and one-dimensional constrained swelling are compared with available experimental data, and these comparisons show a good degree of similarity. In addition to this work providing a valuable tool to researchers for the study of gel kinetic deformation in the various applications of soft matter, we also hope to inspire works to adopt this simplified approach, in particular to kinetic studies of diffusion-driven mechanisms.


2017 ◽  
Vol 73 ◽  
pp. 53-69 ◽  
Author(s):  
Matias Bossio ◽  
David Valentín ◽  
Alexandre Presas ◽  
David Ramos Martin ◽  
Eduard Egusquiza ◽  
...  

Author(s):  
Radka JÍROVÁ ◽  
Lubomír PEŠÍK

Vibroisolation systems of base desks for machine and testing facilities usually cannot effect efficient changing of their own frequencies according to operating conditions. Especially in the case of the automotive industry, the possibility of changing natural frequencies is very desirable. During varying operating conditions, the vibroisolation system needs to be regulated easily and quickly regarding the minimisation of dynamical forces transmitted to the ground and to ensure the stability of the testing process. This paper describes one of the options of tuning the base desk at a relatively short time and by sufficient change of own frequencies, which decides the dynamical behaviour of the whole system.


Author(s):  
L. J. Jiang ◽  
K. W. Wang ◽  
J. Tang

Model updating plays an important role in structural design and dynamic analysis. The process of model updating aims to produce an improved mathematical model by correlating the initial model with the experimentally measured data. There are a variety of techniques available for model updating using dynamic and static measurements of the structure’s behavior. This paper focuses on the model updating methods using the measured natural frequencies of the structure. The practice of model updating using only the natural frequencies encounters two well-known limitations: deficiency of frequency measurement data, and low sensitivity of measured natural frequencies with respect to the physical parameters that need to be updated. To overcome these limitations, a novel model updating method is presented in this paper. First, closed-loop control is applied to the structure to enhance the sensitivity of natural frequencies to the updating parameters. Second, by including the natural frequencies based on a series of sensitivity-enhanced closed-loop systems, we can significantly enrich the frequency measurement data available for model updating. Using the natural frequencies of these sensitivity-enhanced closed-loop systems, an iterative process is utilized to update the physical parameters in the initial model. To demonstrate and verify the proposed method, case studies are carried out using a cantilevered beam structure. The natural frequencies of a series of sensitivity-enhanced closed-loop systems are utilized to update the mass and stiffness parameters in the initial FE model. Results show that the modeling errors in the mass and stiffness parameters can be accurately identified by using the proposed model updating method.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Zerong Zhang ◽  
Yongyan Wang ◽  
Zhimin Fan

In order to predict the physical characteristics of the large vibrating screen from its scale-down model, the similarity ratios of the frequency response functions, mode shapes, and dynamic stresses between the prototype and the scale model screen are built according to the similarity theory. The natural frequencies and modal shapes are extracted from the frequency response function by means of modal tests, in which the relative error of the natural frequencies is less than 9% and the modal shapes are consistent between the prototype and the model. The operating condition parameters including dynamic stress, displacement, velocity, and acceleration were also measured and conform to the similarity criteria. The results show that the inherent and operating condition parameters of the large vibrating screen can be obtained from the scale-down model conveniently, which provides an effective method for structural optimization and substructure coupling analysis of the large vibrating screen.


Author(s):  
Kyoyul Oh ◽  
Ali H. Nayfeh

Abstract We experimentally investigated nonlinear combination resonances in a graphite-epoxy cantilever plate having the configuration (–75/75/75/ – 75/75/ – 75)s. As a first step, we compared the natural frequencies and mode shapes obtained from the finite-element and experimental modal analyses. The largest difference in the obtained frequencies was 2.6%. Then, we transversely excited the plate and obtained force-response and frequency-response curves, which were used to characterize the plate dynamics. We acquired time-domain data for specific input conditions using an A/D card and used them to generate time traces, power spectra, pseudo-state portraits, and Poincaré maps. The data were obtained with an accelerometer monitoring the excitation and a laser vibrometer monitoring the plate response. We observed the external combination resonance Ω≈12(ω2+ω5) and the internal combination resonance Ω≈ω8≈12(ω2+ω13), where the ωi are the natural frequencies of the plate and Ω is the excitation frequency. The results show that a low-amplitude high-frequency excitation can produce a high-amplitude low-frequency motion.


2021 ◽  
Author(s):  
Marek Lubecki ◽  
Michał Stosiak ◽  
Mirosław Bocian ◽  
Kamil Urbanowicz

Abstract The paper presents experimental research and mathematical modeling of flexural vibrations of a composite hydraulic microhose. The tested object was a Polyflex 2020N-013V30 hydraulic microhose, consisting of a braided aramid layer placed in a thermoplastic matrix. The vibrations were induced with an external electromagnetic exciter in the range from 0 Hz to 100 Hz using the sweep function. Using a laser vibrometer, the exciter’s displacement was measured in the above-mentioned range. Long exposure photographs were taken to identify the form of microhose’s vibrations as well as to measure it’s amplitude. The existence of considerable non-linearity in subsequent natural frequencies was shown. At the same time, mathematical simulations were carried out using the Mathematica software. For the analytical description of the object’s vibrations partial differential equations based on the string equation were used. A part responsible for damping in the material was added to the classical equation of the string. The dependence of the values of the stiffness and damping coefficients a on the excitation frequency made it possible to model nonlinearities manifested by the upward shift of higher natural frequencies and the suppression of the amplitudes of successive modes. Further development of the proposed model will allow for modeling the internal pressure in the hose and its effect on transverse vibrations. It will also allow to design of vibrations of composite microhoses and avoid the coupling of these vibrations with external excitations.


2020 ◽  
Vol 20 (10) ◽  
pp. 2042016
Author(s):  
A. Abdullahi ◽  
Y. Wang ◽  
S. Bhattacharya

Offshore wind turbines (OWTs) have emerged as a reliable source of renewable energy, witnessing massive deployment across the world. While there is a wide range of support foundations for these structures, the monopile and jacket are most utilized so far; their deployment is largely informed by water depths and turbine ratings. However, the recommended water depth ranges are often violated, leading to cross-deployment of the two foundation types. This study first investigates the dynamic implication of this practice to incorporate the findings into future analysis and design of these structures. Detailed finite element (FE) models of Monopile and Jacket supported OWTs are developed in the commercial software, ANSYS. Nonlinear soil springs are used to simulate the soil-structure interactions (SSI) and the group effects of the jacket piles are considered by using the relevant modification factors. Modal analyzes of the fixed and flexible-base cases are carried out, and natural frequencies are chosen as the comparison parameters throughout the study. Second, this study constructs a few-parameters SSI model for the two FE models developed above, which aims to use fewer variables in the FE model updating process without compromising its simulation quality. Maximum lateral soil resistance and soil depths are related using polynomial equations, this replaces the standard nonlinear soil spring model. The numerical results show that for the same turbine rating and total height, jacket supported OWTs generally have higher first-order natural frequencies than the monopile supported OWTs, while the reverse is true for the second-order vibration modes, for both fixed and flexible foundations. This contributes to future design considerations of OWTs. On the other hand, with only two parameters, the proposed SSI model has achieved the same accuracy as that using the standard model with seven parameters. It has the potential to become a new SSI model, especially for the identification of soil properties through the model updating process.


Sign in / Sign up

Export Citation Format

Share Document