Application of Endoscopic OH*-Chemiluminescence Measurements at a Full-Scale High-Pressure Gas Turbine Combustion Test Rig

Author(s):  
Benjamin Witzel ◽  
Johannes Heinze ◽  
Boris F. Kock ◽  
Guido Stockhausen ◽  
Holger Streb ◽  
...  

Single burner combustion tests play a key role in the Siemens gas turbine combustion system development process. The main scope of these tests is to assess the performance of combustor design variants in terms emissions or combustion stability at gas turbine relevant operation conditions. Both emissions and combustion stability strongly depend on the flame front and flame position. A pragmatic approach to investigate the flame is to detect the chemiluminescence signal of the combustion intermediate species OH*. Thus, the OH*-chemiluminescence signal was recorded at high-pressure combustion tests to get more insight in the complex interactions between combustor design, operation conditions and combustion performance. To minimize the impact of the measurement system on the combustion behavior, the optical access to the test rig was realized by using a water-cooled probe with an UV-transparent endoscope. The probe was located in the test rig side-wall, downstream of the burner outlet, viewing towards the burner with a 90° angle relative to the endoscope orientation. The experimental setup was completed by a combination of bandpass filters and an ICCD camera. During the experiments acoustic pressure oscillations inside the combustion chamber were recorded simultaneously to the chemiluminescence images to allow for phase-sorting of the recorded images during the image post-processing. The post-processed images then were correlated with the pressure oscillations to investigate the relationship of the heat release to the pressure oscillations. The measurements were carried out during single burner gas turbine combustion tests at realistic gas turbine operation conditions at a scaled pressure of 9 bar. This paper presents selected test results and discusses how they give new insight in the complex combustion processes at full-scale high-pressure gas turbine combustion tests.

Author(s):  
Simon Goers ◽  
Benjamin Witzel ◽  
Johannes Heinze ◽  
Guido Stockhausen ◽  
Jaap van Kampen ◽  
...  

The development process for gas turbine combustion systems includes single-burner high-pressure combustion tests as an important validation step. In these tests the performance of a combustor is investigated at realistic gas turbine conditions. Measurement techniques that are typically used in these tests include mass flow meters, thermocouples, pressure transducers, and probes for exhaust-gas composition measurements. These measurement techniques, however, do not provide direct information of the flame behavior. Chemiluminescence measurements have proven to being a valuable and robust technique to close this gap [1,2]. This paper summarizes the results of chemiluminescence measurements performed at Siemens full-scale high-pressure single-burner combustion test rigs at the German Aerospace Center (DLR) in Cologne, Germany. To minimize the impact of the measurement system on the experiment, the optical access to the test rigs was provided by a water-cooled endoscopic probe. The probe was located in a side-wall downstream of the burner, viewing upstream towards the burner outlet. The probe was successfully operated up to full engine pressure and flame temperatures of approximately 1900 K. For the detection of the chemiluminescence signal different approaches were applied: • Spectral analyses of the chemiluminescence signal were done by using an USB spectrometer. • For flame imaging up to two intensified CCD cameras were applied. In front of the cameras various combinations of optical filters were installed to selectively record the respective chemiluminescent species (OH*, CH*, CO2*). • For studies with special focus on combustion dynamics an intensified high-speed CMOS camera was used. High-repetition-rate measurements were used for identifying the shapes of flame modes. • Acoustic pressure oscillations inside the combustion chamber were recorded by pressure transducers simultaneously to the camera images. This allows the pressure oscillations to be correlated with flame fluctuations during post-processing [3,4]. Generally, the robustness of endoscopic chemiluminescence measurements was successfully demonstrated in numerous tests at realistic gas turbine conditions. The applied imaging setups provided new information about the connection between the flame position and NOx emissions as well as the correlation of flame fluctuations and pressure oscillations. Hence, they have become a valuable experimental tool to improve the evaluation and understanding of the combustor performance. Future work will focus on further improvement of quantitative evaluations by compensation of line-of-sight image integration, reabsorption of OH* by OH, and beam steering.


2021 ◽  
Author(s):  
A. Ciani ◽  
L. Tay-Wo-Chong ◽  
A. Amato ◽  
E. Bertolotto ◽  
G. Spataro

Abstract Fuel flexibility in gas turbine development has become increasingly important and modern engines need to cope with a broad variety of fuels. The target to operate power plants with hydrogen-based fuels and low emissions will be of paramount importance in a future focusing on electric power decarbonization. Ansaldo Energia AE94.3A engine acquired broad experience with operation of various natural gas and hydrogen fuel blends, starting in 2006 in the Brindisi (Italy) power plant. Based on the exhaustive experience acquired in the field, this paper describes the latest advancements characterizing the operation of the AE94.3A burner with high pressure combustion tests adding hydrogen blends ranging from 0 to 40% in volume. The interpretation of the test results is supported by reactive and non-reactive simulations describing the effects of varying fuel reactivity on the flame structure as well as the impact of fuel / air momentum flux ratio on the fuel / air interaction and fuel distribution in the combustion chamber. As expected, increasing amounts of hydrogen in the fuel are also associated with higher amounts of NOx production, however this effect could be countered by optimization of the fuel staging strategy, based on the mentioned CFD considerations and feedback from high pressure tests.


Author(s):  
Patrick Nau ◽  
Simon Görs ◽  
Christoph Arndt ◽  
Benjamin Witzel ◽  
Torsten Endres

Abstract Wall temperature measurements with fiber coupled online phosphor thermometry were, for the first time, successfully performed in a full scale H-class Siemens gas turbine combustor. Online wall temperatures were obtained during high-pressure combustion tests up to 8 bar at the Siemens CEC test facility. Since optical access to the combustion chamber with fibers being able to provide high laser energies is extremely challenging, we developed a custom-built measurement system, consisting of a water-cooled fiber optic probe and a mobile measurement container. A suitable combination of chemical binder and thermographic phosphor was identified for temperatures up to 1800 K on combustor walls coated with a thermal barrier coating (TBC). To our knowledge these are the first measurements reported with fiber coupled online phosphor thermometry in a full scale high-pressure gas turbine combustor. Details of the setup and the measurement procedures will be presented. The measured signals were influenced by strong background emissions, probably from CO2* chemiluminescence. Strategies for correcting background-emissions and data evaluation procedures are discussed. The presented measurement technique enables detailed study of combustor wall temperatures and using this information an optimization of the gas turbine cooling design.


Author(s):  
Davide Laera ◽  
Giovanni Campa ◽  
Sergio M. Camporeale ◽  
Edoardo Bertolotto ◽  
Sergio Rizzo ◽  
...  

This paper concerns the acoustic analysis of self–sustained thermoacoustic pressure oscillations that occur in a test rig equipped with full scale lean premixed burner. The experimental work is conducted by Ansaldo Energia and CCA (Centro Combustione Ambiente) at the Ansaldo Caldaie facility in Gioia del Colle (Italy), in cooperation with Politecnico di Bari. The test rig is characterized by a longitudinal development with two acoustic volumes, plenum and combustion chamber, coupled by the burner. The length of both chambers can be varied with continuity in order to obtain instability at different frequencies. A previously developed three dimensional finite element code has been applied to carry out the linear stability analysis of the system, modelling the thermoacoustic combustion instabilities through the Helmholtz equation under the hypothesis of low Mach approximation. The heat release fluctuations are modelled according to the κ-τ approach. The burner, characterized by two conduits for primary and secondary air, is simulated by means of both a FEM analysis and a Burner Transfer Matrix (BTM) method in order to examine the influence of details of its actual geometry. Different operating conditions, in which self–sustained pressure oscillations have been observed, are examined. Frequencies and growth rates of unstable modes are identified, with good agreement with experimental data in terms of frequencies and acoustics pressure wave profiles.


Author(s):  
Stefano Tiribuzi

ENEL operates a dozen combined cycle units whose V94.3A gas turbines are equipped with annular combustors. In such lean premixed gas turbines, particular operation conditions could trigger large pressure oscillations due to thermoacoustic instabilities. The ENEL Research unit is studying this phenomenon in order to find out methods which could avoid or mitigate such events. The use of effective numerical analysis techniques allowed us to investigate the realistic time evolution and behaviour of the acoustic fields associated with this phenomenon. KIEN, an in-house low diffusive URANS code capable of simulating 3D reactive flows, has been used in the Very Rough Grid approach. This approach permits the simulation, with a reasonable computational time, of quite long real transients with a computational domain extended over all the resonant volumes involved in the acoustic phenomenon. The V94.3A gas turbine model was set up with a full combustor 3D grid, going from the compressor outlet up to the turbine inlet, including both the annular plenum and the annular combustion chamber. The grid extends over the entire circular angle, including all the 24 premixed burners. Numerical runs were performed with the normal V94.3A combustor configuration, with input parameters set so as no oscillations develop in the standard ambient conditions. Wide pressure oscillations on the contrary are associated with the circumferential acoustic modes of the combustor, which have their onset and grow when winter ambient conditions are assumed. These results also confirmed that the sustaining mechanism is based on the equivalence ratio fluctuation of premix mixture and that plenum plays an important role in such mechanism. Based on these findings, a system for controlling the thermoacoustic oscillation has been conceived (Patent Pending), which acts on the plenum side of the combustor. This system, called SCAP (Segmentation of Combustor Annular Plenum), is based on the subdivision of the plenum annular volume by means of a few meridionally oriented walls. Repetition of KIEN runs with a SCAP configuration, in which a suitable number of segmentation walls were properly arranged in the annular plenum, demonstrated the effectiveness of this solution in preventing the development of wide thermoacoustic oscillations in the combustor.


Author(s):  
Homam Nikpey ◽  
Mohsen Assadi ◽  
Peter Breuhaus

Previously published studies have addressed modifications to the engines when operating with biogas, i.e. a low heating value (LHV) fuel. This study focuses on mapping out the possible biogas share in a fuel mixture of biogas and natural gas in micro combined heat and power (CHP) installations without any engine modifications. This contributes to a reduction in CO2 emissions from existing CHP installations and makes it possible to avoid a costly upgrade of biogas to the natural gas quality as well as engine modifications. Moreover, this approach allows the use of natural gas as a “fallback” solution in the case of eventual variations of the biogas composition and or shortage of biogas, providing improved availability. In this study, the performance of a commercial 100kW micro gas turbine (MGT) is experimentally evaluated when fed by varying mixtures of natural gas and biogas. The MGT is equipped with additional instrumentation, and a gas mixing station is used to supply the demanded fuel mixtures from zero biogas to maximum possible level by diluting natural gas with CO2. A typical biogas composition with 0.6 CH4 and 0.4 CO2 (in mole fraction) was used as reference, and corresponding biogas content in the supplied mixtures was computed. The performance changes due to increased biogas share were studied and compared with the purely natural gas fired engine. This paper presents the test rig setup used for the experimental activities and reports results, demonstrating the impact of burning a mixture of biogas and natural gas on the performance of the MGT. Comparing with when only natural gas was fired in the engine, the electrical efficiency was almost unchanged and no significant changes in operating parameters were observed. It was also shown that burning a mixture of natural gas and biogas contributes to a significant reduction in CO2 emissions from the plant.


Author(s):  
Y. Wang ◽  
L. Reh ◽  
D. Pennell ◽  
D. Winkler ◽  
K. Döbbeling

Stationary gas turbines for power generation are increasingly being equipped with low emission burners. By applying lean premixed combustion techniques for gaseous fuels both NOx and CO emissions can be reduced to extremely low levels (NOx emissions <25vppm, CO emissions <10vppm). Likewise, if analogous premix techniques can be applied to liquid fuels (diesel oil, Oil No.2, etc.) in gas-fired burners, similar low level emissions when burning oils are possible. For gas turbines which operate with liquid fuel or in dual fuel operation, VPL (Vaporised Premixed Lean)-combustion is essential for obtaining minimal NOx-emissions. An option is to vaporise the liquid fuel in a separate fuel vaporiser and subsequently supply the fuel vapour to the natural gas fuel injection system; this has not been investigated for gas turbine combustion in the past. This paper presents experimental results of atmospheric and high-pressure combustion tests using research premix burners running on vaporised liquid fuel. The following processes were investigated: • evaporation and partial decomposition of the liquid fuel (Oil No.2); • utilisation of low pressure exhaust gases to externally heat the high pressure fuel vaporiser; • operation of ABB premix-burners (EV burners) with vaporised Oil No.2; • combustion characteristics at pressures up to 25bar. Atmospheric VPL-combustion tests using Oil No.2 in ABB EV-burners under simulated gas turbine conditions have successfully produced emissions of NOx below 20vppm and of CO below 10vppm (corrected to 15% O2). 5vppm of these NOx values result from fuel bound nitrogen. Little dependence of these emissions on combustion pressure bas been observed. The techniques employed also ensured combustion with a stable non luminous (blue) flame during transition from gaseous to vaporised fuel. Additionally, no soot accumulation was detectable during combustion.


Author(s):  
Maryam Besharati-Givi ◽  
Xianchang Li

The increase of power need raises the awareness of producing energy more efficiently. Gas turbine has been one of the important workhorses for power generation. The effects of parameters in design and operation on the power output and efficiency have been extensively studied. It is well-known that the gas turbine inlet temperature (TIT) needs to be high for high efficiency as well as power production. However, there are some material restrictions with high-temperature gas especially for the first row of blades. As a result blade cooling is needed to help balance between the high TIT and the material limitations. The increase of TIT is also limited by restriction of emissions. While the blade cooling can allow a higher TIT and better turbine performance, there is also a penalty since the compressed air used for cooling is removed from the combustion process. Therefore, an optimal cooling flow may exist for the overall efficiency and net power output. In this paper the relationship between the TIT and amount of cooling air is studied. The TIT increase due to blade cooling is considered as a function of cooling air flow as well as cooling effectiveness. In another word, the increase of the TIT is limited while the cooling air can be increased continuously. Based on the relationship proposed the impact of blade cooling on the gas turbine performance is investigated. Compared to the simple cycle case without cooling, the blade cooling can increase the efficiency from 28.8 to 34.0% and the net power from 105 to 208 MW. Cases with different operation conditions such as pressure ratios as well as design aspects with regeneration are considered. Aspen plus software is used to simulate the cycles.


Sign in / Sign up

Export Citation Format

Share Document