Micro-Gas Turbine Feed With Natural Gas and Synthesis Gas: Variation of the Turbomachines’ Operative Conditions With and Without Steam Injection

Author(s):  
Massimiliano Renzi ◽  
Carlo Caligiuri ◽  
Mosè Rossi

In this work, the performances of a 100 kW Micro Gas Turbine (MGT) fed by Natural Gas (NG) and three different biomass-derived Synthesis Gases (SGs) have been assessed using a MATLAB® simulation algorithm. The set of equations in the algorithm includes the thermodynamic transformations of the working fluid in each component, the performance maps that describe the turbomachines’ isentropic efficiencies and pressure ratios as a function of the reduced mass flow rate and the reduced rotational speed, the performance and the pressure losses in each component, as well as the consumption of the other auxiliary devices. The electric power output, achieved using SGs, turns out to be lower or higher with respect to the one produced with the NG, depending on the fuel Lower Heating Value (LHV) but also largely on the variation of the working fluid composition. In this work, the effect of the steam injection on the MGT performance characteristics has been also investigated. Steam injection allows to obtain higher power and efficiencies using both NG and SGs at the rated rotational speed, mainly thanks to the increase of the turbine enthalpy drop and the reduction of the compressor consumption. Attention must be paid to the risk of the compressor stall, especially when using SGs, as the mass flow rate processed by the compressor decreases significantly. Moreover, another advantage of adopting the steam injection technique lies in the increased flexibility of the system: according to the users’ needs, the discharged heat can be exploited to generate steam, thus to enhance the electric performances, or to supply thermal power.

Author(s):  
Mohsen Ghazikhani ◽  
Nima Manshoori ◽  
Davood Tafazoli

An industrial gas turbine has the characteristic that turbine output decreases on hot summer days when electricity demand peaks. For GE-F5 gas turbines of Mashad Power Plant when ambient temperature increases 1° C, compressor outlet temperature increases 1.13° C and turbine exhaust temperature increases 2.5° C. Also air mass flow rate decreases about 0.6 kg/sec when ambient temperature increases 1° C, so it is revealed that variations are more due to decreasing in the efficiency of compressor and less due to reduction in mass flow rate of air as ambient temperature increases in constant power output. The cycle efficiency of these GE-F5 gas turbines reduces 3 percent with increasing 50° C of ambient temperature, also the fuel consumption increases as ambient temperature increases for constant turbine work. These are also because of reducing in the compressor efficiency in high temperature ambient. Steam injection in gas turbines is a way to prevent a loss in performance of gas turbines caused by high ambient temperature and has been used for many years. VODOLEY system is a steam injection system, which is known as a self-sufficient one in steam production. The amount of water vapor in combustion products will become regenerated in a contact condenser and after passing through a heat recovery boiler is injected in the transition piece after combustion chamber. In this paper the influence of steam injection in Mashad Power Plant GE-F5 gas turbine parameters, applying VODOLEY system, is being observed. Results show that in this turbine, the turbine inlet temperature (T3) decreases in a range of 5 percent to 11 percent depending on ambient temperature, so the operating parameters in a gas turbine cycle equipped with VODOLEY system in 40° C of ambient temperature is the same as simple gas turbine cycle in 10° C of ambient temperature. Results show that the thermal efficiency increases up to 10 percent, but Back-Work ratio increases in a range of 15 percent to 30 percent. Also results show that although VODOLEY system has water treatment cost but by using this system the running cost will reduce up to 27 percent.


Author(s):  
Shuai Shao ◽  
Qinghua Deng ◽  
Zhenping Feng

In this paper, an aerodynamic optimization of the radial inflow turbine for a 100kW-class micro gas turbine is conducted based on the metamodel-semi-assisted idea. The idea is applied by first using the metamodel as a rapid exploration tool and then switching to the accurate optimization without metamodel for further exploration of the design space [1]. The non-dominated sorting genetic algorithm (NSGA-II) is used to drive the optimization process and the BP neural network is used to construct the metamodel. The optimization of this radial inflow turbine is divided into two parts, the stator optimization and the rotor optimization. The stator optimization is based on the accurate optimization strategy. The minimum total pressure loss of the stator and the maximum isentropic total-to-static efficiency of the stage are considered as the objective functions with constant mass flow rate as a constraint. The rotor optimization is conducted through the metamodel-semi-assisted idea. The maximum power output and isentropic total-to-static efficiency of the stage are considered as objective functions while keeping the mass flow rate to be constant. The accurate optimization system is demonstrated to be effective for the stator optimization, and the total pressure loss is reduced by 11.6% while the mass flow rate variation is less than 1%. The rotor optimization is conducted based on the metamodel-semi-assisted optimization and the results confirm the effectiveness of this new idea. The output power of the rotor increased by 1.5%, the isentropic total-to-static efficiency of the stage increased by 1.19% and the mass flow variation is less than 1%.


Author(s):  
C. Buratto ◽  
A. Carandina ◽  
M. Morini ◽  
C. Pavan ◽  
M. Pinelli ◽  
...  

In this paper, a test rig for experimentation on a micro gas turbine is presented. The test rig consists of a micro gas turbine Solar T-62T-32, which, coupled with a 50 kVA alternator, can supply electrical energy to a calibrated resistive load bank. Particular attention is paid to the design of the inlet duct for the mass flow rate measurement. The basic issue was to create the intake duct for a micro gas turbine (MGT) test rig, in order to provide precise data about the mass flow rate and the thermodynamic air characteristics in the MGT inlet section. The inlet duct is also designed in order to allow future tests on inlet cooling technologies. The MGT is incorporated in a chassis for noise reduction, the dimensions of which are 540 mm (height), 570 mm (width) and 940 mm (length). These small dimensions lead to problems with the insertion of the duct. Moreover, the intake of the compressor is not axial but radial, and this means that a volute must be foreseen to convey the flux into the MGT. Several shapes of volute are analyzed in this paper, considering the effects on the pressure loss and the induction of turbulence. The challenge was to develop a fluid-dynamically efficient duct with the hindrance of a very small available space between the compressor casing, the gearbox and the fuel pipes inside the narrow noise-reduction chassis. The mass flow rate will be computed by means of the differential static pressure between the upstream and the downstream section of a Venturi tube. The choice of a Venturi was due to the fact that it produces a pressure loss lower than any other device, such as orifice plates or other nozzle shapes. Furthermore, the expected mass flow rate would lead to high fluid speeds and, as a consequence, the diameter ratio between the duct and the throat of the Venturi was chosen to be as high as possible.


Author(s):  
Balbina Hampel ◽  
Stefan Bauer ◽  
Norbert Heublein ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

In recent years, renewable energy technologies have received increasing attention. However, the constant availability of renewable energies is not predictable, so that technologies for excess energy storage become increasingly important. One possibility for the technical implementation of such a storage technology is to bind hydrogen, produced using this excess energy, to liquid organic compounds, so-called Liquid Organic Hydrogen Carriers (LOHC), where hydrogen is bound to a H2-lean LOHC molecule in an exothermal hydrogenation reaction. The dehydrogenation process releases the stored hydrogen in an endothermal reaction. This technology offers advantages such as storage and transport safety, along with the high energy density. LOHC systems can assist in the realization of future distributed energy supply networks, as well. Micro gas turbines (MGT) play an important role in distributed energy supply, so that the coupling of a hydrogen fueled MGT with a reactor for the dehydrogenation process is a desirable achievement. In such a combined system, the excess exhaust enthalpy can be used to maintain the endothermal dehydrogenation reaction without affecting the overall efficiency of the gas turbine. This paper investigates the feasibility of a direct coupling between a hydrogen fueled recuperated micro gas turbine and the dehydrogenation process using the excess exhaust heat. For this purpose, a numerical simulation based on energy balances and thermodynamic equilibrium is implemented to model the process. Primary criteria for the evaluation of the process feasibility are the MGTs exhaust gas temperature, the exhaust gas mass flow rate, and the LOHC mass flow rate through the dehydrogenation unit. These three parameters specify the mass flow rate of LOHC, which can be dehydrogenated and thus, the mass flow rate of released hydrogen. Using the implemented numerical model, the suitability of two different LOHCs, N-Ethylcarbazole and an industrial heat transfer oil is investigated at two different pressure levels with respect to thermodynamic feasibility and process efficiency. The results show that the usable excess enthalpy in the exhaust gas of the investigated Turbec T100 MGT is sufficient to release enough hydrogen for re-use as fuel in the micro turbine process for three of the four investigated cases.


Author(s):  
Sepehr Sanaye ◽  
Vahid Mahdikhani ◽  
Ziaeddin Khajeh Karimeddini ◽  
Gholamreza Sadri

Steam injection into gas turbine combustion chamber increases the power output and lowers the NOx emissions. Steam may be produced in a heat recovery steam generator (HRSG), using gas turbine exhaust gases. Steam which is usually injected with pressure of combustion chamber, increases the mass flow rate flowing through turbine and decreases the combustion temperature, hence, lowering the amount of NOx emissions. This power augmentation method is usually used for gas turbines with power outputs in range of 2–50 MW with one pressure level in HRSG. In this paper the optimum design parameters of the above mentioned system is obtained for the above range of gas turbine power output. For doing this task an objective function is introduced which contains the economic and thermal characteristics of the system. This objective function is minimized when gas turbine exhaust temperature, compressor pressure ratio, isentropic efficiency of compressor and turbine, fuel mass flow rate (natural gas), inlet air mass flow rate, and the amount of injected steam mass flow rate vary.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannah R. Doran ◽  
Theo Renaud ◽  
Gioia Falcone ◽  
Lehua Pan ◽  
Patrick G. Verdin

AbstractAlternative (unconventional) deep geothermal designs are needed to provide a secure and efficient geothermal energy supply. An in-depth sensitivity analysis was investigated considering a deep borehole closed-loop heat exchanger (DBHE) to overcome the current limitations of deep EGS. A T2Well/EOS1 model previously calibrated on an experimental DBHE in Hawaii was adapted to the current NWG 55-29 well at the Newberry volcano site in Central Oregon. A sensitivity analysis was carried out, including parameters such as the working fluid mass flow rate, the casing and cement thermal properties, and the wellbore radii dimensions. The results conclude the highest energy flow rate to be 1.5 MW, after an annulus radii increase and an imposed mass flow rate of 5 kg/s. At 3 kg/s, the DBHE yielded an energy flow rate a factor of 3.5 lower than the NWG 55-29 conventional design. Despite this loss, the sensitivity analysis allows an assessment of the key thermodynamics within the wellbore and provides a valuable insight into how heat is lost/gained throughout the system. This analysis was performed under the assumption of subcritical conditions, and could aid the development of unconventional designs within future EGS work like the Newberry Deep Drilling Project (NDDP). Requirements for further software development are briefly discussed, which would facilitate the modelling of unconventional geothermal wells in supercritical systems to support EGS projects that could extend to deeper depths.


Author(s):  
Mohammad J. Izadi ◽  
Alireza Falahat

In this investigation an attempt is made to find the best hub to tip ratio, the maximum number of blades, and the best angle of attack of an axial fan with flat blades at a fixed rotational speed for a maximum mass flow rate in a steady and turbulent conditions. In this study the blade angles are varied from 30 to 70 degrees, the hub to tip ratio is varied from 0.2 to 0.4 and the number of blades are varied from 2 to 6 at a fixed hub rotational speed. The results show that, the maximum flow rate is achieved at a blade angle of attack of about 45 degrees for when the number of blades is set equal to 4 at most rotational velocities. The numerical results show that as the hub to tip ratio is decreased, the mass flow rate is increased. For a hub to tip ratio of 0.2, and an angle of attack around 45 degrees with 4 blades, a maximum mass flow rate is achieved.


In this investigation of multi heat pipe induced in heat exchanger shows the developments in heat transfer is to improve the efficiency of heat exchangers. Water is used as a heat transfer fluid and acetone is used as a working fluid. Rotameter is set to measure the flow rate of cold water and hot water. To maintain the parameter as experimental setup. Then set the mass flow rate of hot water as 40 LPH, 60LPH, 80 LPH, 100LPH, 120 LPH and mass flow rate of cold water as 20 LPH, 30 LPH, 40 LPH, 50 LPH, and 60 LPH. Then 40 C, 45 ºC, 50 ºC, 55 C, 60 ºC are the temperatures of hot water at inlet are maintained. To find some various physical parameters of Qc , hc , Re ,, Pr , Rth. The maximum effectiveness of the investigation obtained from condition of Thi 60 C, Tci 32 C and 100 LPH mhi, 60 LPH mci the maximum effectiveness attained as 57.25. Then the mhi as 100 LPH, mci as 60 LPH and Thi at 40 C as 37.6%. It shows the effectiveness get increased about 34.3 to the maximum conditions.


2021 ◽  
Author(s):  
Raghuvaran D. ◽  
Satvik Shenoy ◽  
Srinivas G

Abstract Axial flow fans (AFF) are extensively used in various industrial sectors, usually with flows of low resistance and high mass flow rates. The blades, the hub and the shroud are the three major parts of an AFF. Various kinds of optimisation can be implemented to improve the performance of an AFF. The most common type is found to be geometric optimisation including variation in number of blades, modification in hub and shroud radius, change in angle of attack and blade twist, etc. After validation of simulation model and carrying out a grid independence test, parametric analysis was done on an 11-bladed AFF with a shroud of uniform radius using ANSYS Fluent. The rotational speed of the fan and the velocity at fan inlet were the primary variables of the study. The variation in outlet mass flow rate and total pressure was studied for both compressible and incompressible ambient flows. Relation of mass flow rate and total pressure with inlet velocity is observed to be linear and exponential respectively. On the other hand, mass flow rate and total pressure have nearly linear relationship with rotational speed. A comparison of several different axial flow tracks with the baseline case fills one of the research gaps.


Author(s):  
Dominik Schlüter ◽  
Robert P. Grewe ◽  
Fabian Wartzek ◽  
Alexander Liefke ◽  
Jan Werner ◽  
...  

Abstract Rotating stall is a non-axisymmetric disturbance in axial compressors arising at operating conditions beyond the stability limit of a stage. Although well-known, its driving mechanisms determining the number of stall cells and their rotational speed are still marginally understood. Numerical studies applying full-wheel 3D unsteady RANS calculations require weeks per operating point. This paper quantifies the capability of a more feasible quasi-2D approach to reproduce 3D rotating stall and related sensitivities. The first part of the paper deals with the validation of a numerical baseline the simplified model is compared to in detail. Therefore, 3D computations of a state-of-the-art transonic compressor are conducted. At steady conditions the single-passage RANS CFD matches the experimental results within an error of 1% in total pressure ratio and mass flow rate. At stalled conditions, the full-wheel URANS computation shows the same spiketype disturbance as the experiment. However, the CFD underpredicts the stalling point by approximately 7% in mass flow rate. In deep stall, the computational model correctly forecasts a single-cell rotating stall. The stall cell differs by approximately 21% in rotational speed and 18% in circumferential size from the experimental findings. As the 3D model reflects the compressor behaviour sufficiently accurate, it is considered valid for physical investigations. In the second part of the paper, the validated baseline is reduced in radial direction to a quasi-2D domain only resembling the compressor tip area. Four model variations regarding span-wise location and extent are numerically investigated. As the most promising model matches the 3D flow conditions in the rotor tip region, it correctly yields a single-cell rotating stall. The cell differs by only 7% in circumferential size from the 3D results. Due to the impeded radial migration in the quasi-2D slice, however, the cell exhibits an increased axial extent. It is assumed, that the axial expansion into the adjacent rows causes the difference in cell speed by approximately 24%. Further validation of the reduced model against experimental findings reveals, that it correctly reflects the sensitivity of circumferential cell size to flow coefficient and individual cell speed to compressor shaft speed. As the approach reduced the wall clock time by 92%, it can be used to increase the physical understanding of rotating stall at much lower costs.


Sign in / Sign up

Export Citation Format

Share Document