Coatings for the Protection of Turbine Blades From Erosion

1995 ◽  
Vol 117 (1) ◽  
pp. 152-155 ◽  
Author(s):  
P. N. Walsh ◽  
J. M. Quets ◽  
R. C. Tucker

Many types of turbines, including aircraft gas turbines, steam turbines, and power recovery turbines, suffer from solid particle erosion caused by a variety of materials ingested into the machines. Utilization of various laboratory erosion tests tailored to the specific application by using various erodents, temperatures, velocities, and angles of impact, have been shown to be effective in the development and selection of coatings for the erosion protection of turbine blades and other components. Detonation gun coatings have demonstrated their efficacy in providing substantial protection in many situations. It has now been shown that several tungsten carbide and chromium carbide Super D-Gun™ coatings not only have better erosion resistance than their D-Gun analogs, but cause little or no degradation of the fatigue properties of the blade alloys. Nonetheless, caution should be employed in the application of any laboratory data to a specific situation and additional testing done as warranted by the turbine designer.

1993 ◽  
Author(s):  
P. N. Walsh ◽  
J. M. Quets ◽  
R. C. Tucker

Many types of turbines, including aircraft gas turbines, steam turbines, and power recovery turbines, suffer from solid particle erosion caused by a variety of materials ingested into the machines. Utilization of various laboratory erosion tests tailored to the specific application by using various erodents, temperatures, velocities, and angles of impact, have been shown to be effective in the development and selection of coatings for the erosion protection of turbine blades and other components. Detonation gun coatings have demonstrated their efficacy in providing substantial protection in many situations. It has now been shown that several tungsten carbide and chromium carbide Super D-Gun™ coatings not only have better erosion resistance than their D-Gun analogs, but cause little or no degradation of the fatigue properties of the blade alloys. Nonetheless, caution should be employed in the application of any laboratory data to a specific situation and additional testing done as warranted by the turbine designer.


Author(s):  
Deqi Yu ◽  
Xiaojun Zhang ◽  
Jiandao Yang ◽  
Kai Cheng ◽  
Weilin Shu ◽  
...  

Fir-tree root and groove profiles are widely used in gas turbine and steam turbine. Normally, the fir-tree root and groove are characterized with straight line, arc or even elliptic fillet and splines, then the parameters of these features were defined as design variables to perform root profile optimization. In ultra-long blades of CCPP and nuclear steam turbines and high-speed blades of industrial steam turbine blades, both the root and groove strength are the key challenges during the design process. Especially, in industrial steam turbines, the geometry of blade is very small but the operation velocity is very high and the blade suffers stress concentration severely. In this paper, two methods for geometry configuration and relevant optimization programs are described. The first one is feature-based using straight lines and arcs to configure the fir-tree root and groove geometry and genetic algorithm for optimization. This method is quite fit for wholly new root and groove design. And the second local optimization method is based on B-splines to configure the geometry where the local stress concentration occurs and the relevant optimization algorithm is used for optimization. Also, several cases are studied as comparison by using the optimization design platform. It can be used not only in steam turbines but also in gas turbines.


Author(s):  
Ali Sheikh ◽  
Joseph Rozewicz ◽  
R. V. Kadkol

Configuration and design of cogeneration power plant supplying 374 MW electric power and 1500 t/h process steam for a new Reliance Jamnagar Refinery and Petrochemical Complex have been optimised on the basis of (i) reliability of power and steam supplies, (ii) fuel availability, (iii) capital and operating cost, and (iv) synergy between the refinery and petrochemical complex, and power plant start-up schedules. The basic equipment of the power plant consists of 8 Gas Turbines of average site rated power output 31.7 MW per unit, 4 Steam Turbines of 30 MW power output each, 8 HRSG with supplementary firing each having capacity of 125 t/h and 4 conventional Steam Generators of capacity 125 t/h each. The steam generation parameters are: pressure 113.8 bar and temperature 510 °C. The cogeneration power plant also supplies for the refinery complex high pressure steam and intermediate pressure steam extracted from steam turbines. An analysis of various normal and upset operating scenarios of the refinery complex was carried out to achieve optimal selection of the equipment ensuring the required steam and power supply.


Author(s):  
Edward Rokicki ◽  
Radoslaw Przysowa ◽  
Jerzy Kotkowski ◽  
Paweł Majewski

Magnetic sensors are widely used in health management systems for turbomachinery, but their applications in the hot zone are limited due to the loss of magnetic properties by permanent magnets with increasing temperature. The paper presents and verifies models and design solutions aimed at improving the performance of an inductive sensor for measuring the motion of rotating objects operating at elevated temperatures (200-1000C), such as compressor and turbine blades. Physical, analog and mathematical models of the interaction of blades with the sensor were developed. A prototype of the sensor was made and its tests were carried out on the RK-4 rotor rig for the speed of 7000 rpm, in which the temperature of the sensor head was gradually increased to 1100C. The sensor signal level was compared to that of an identical sensor operating at room temperature. The heated sensor works continuously producing the output signal whose level does not change significantly. What is more, a set of six probes passed an initial engine test in an SO-3 turbojet. It was confirmed that the proposed design of the inductive sensor is suitable for blade health monitoring of the last stages of compressors, steam turbines as well as previous generation gas turbines operating below 1000C, even without a dedicated cooling system. In real-engine applications, sensor performance will depend on how the sensor is installed and the available heat dissipation capability


1979 ◽  
Author(s):  
N. P. Baudat ◽  
O. R. James

This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower.


2014 ◽  
Vol 907 ◽  
pp. 139-149 ◽  
Author(s):  
Eckart Uhlmann ◽  
Florian Heitmüller

In gas turbines and turbo jet engines, high performance materials such as nickel-based alloys are widely used for blades and vanes. In the case of repair, finishing of complex turbine blades made of high performance materials is carried out predominantly manually. The repair process is therefore quite time consuming. And the costs of presently available repair strategies, especially for integrated parts, are high, due to the individual process planning and great amount of manually performed work steps. Moreover, there are severe risks of partial damage during manually conducted repair. All that leads to the fact that economy of scale effects remain widely unused for repair tasks, although the piece number of components to be repaired is increasing significantly. In the future, a persistent automation of the repair process chain should be achieved by developing adaptive robot assisted finishing strategies. The goal of this research is to use the automation potential for repair tasks by developing a technology that enables industrial robots to re-contour turbine blades via force controlled belt grinding.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 927-934
Author(s):  
Tao Song ◽  
Chao Liu ◽  
Hengxuan Zhu ◽  
Min Zeng ◽  
Jin Wang

Abstract Normal operation of gas turbines will be affected by deposition on turbine blades from particles mixed in fuels. This research shows that it is difficult to monitor the mass of the particles deposition on the wall surface in real time. With development of electronic technology, the antenna made of printed circuit board (PCB) has been widely used in many industrial fields. Microstrip antenna is first proposed for monitoring particles deposition to analyse the deposition law of the particles accumulated on the wall. The simulation software Computer Simulation Technology Microwave Studio (CST MWS) 2015 is used to conduct the optimization design of the PCB substrate antenna. It is found that the S11 of vivaldi antenna with arc gradient groove exhibits a monotonous increase with the increase of dielectric layer thickness, and this antenna is highly sensitive to the dielectric layer thickness. Moreover, a cold-state test is carried out by using atomized wax to simulate the deposition of pollutants. A relationship as a four number of times function is found between the capacitance and the deposited mass. These results provide an important reference for the mass detection of the particle deposition on the wall, and this method is suitable for other related engineering fields.


Author(s):  
Alan R. May Estebaranz ◽  
Richard J. Williams ◽  
Simon I. Hogg ◽  
Philip W. Dyer

A laboratory scale test facility has been developed to investigate deposition in steam turbines under conditions that are representative of those in steam power generation cycles. The facility is an advanced two-reactor vessel test arrangement, which is a more flexible and more accurately controllable refinement to the single reactor vessel test arrangement described previously in ASME Paper No. GT2014-25517 [1]. The commissioning of the new test facility is described in this paper, together with the results from a series of tests over a range of steam conditions, which show the effect of steam conditions (particularly steam pressure) on the amount and type of deposits obtained. Comparisons are made between the test results and feedback/experience of copper fouling in real machines.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Sign in / Sign up

Export Citation Format

Share Document