CFD and Experimental Analysis of Centrifugal Fans With Forward Curved Blades Used in Electric Motors

Author(s):  
S. S. Borges

Abstract This work presents an analysis of the aerodynamic performance of a centrifugal fan with forward curved blades (Sirocco) applied to electric motors. In this analysis were carried out computational fluid dynamics (CFD) simulations and experimental tests for comparison of results. The focus of this analysis is the performance comparison among three different models of general connection interface that are required for the connection between the grids of the rotating and stationary domains of CFD simulation, considering the method adopted by the Ansys CFX, software used as computational tool. Thereby, Frozen Rotor, Stage, and Transient Rotor-Stator were the interface models evaluated. For comparison reference, the experimental data were used to evaluate the performance of each interface models for overall operating range of the fan.

2021 ◽  
Vol 10 (12) ◽  
pp. e412101219653
Author(s):  
Henrique Marcio Pereira Rosa ◽  
Gabriela Pereira Toledo

Computational fluid dynamics (CFD) is the most current technology in the fluid flow study. Experimental methods for predicting the turbomachinery performance involve greater time consumption and financial resources compared to the CFD approach. The purpose of this article is to present the analysis of CFD simulation results in a centrifugal fan. The impeller was calculated using the one-dimensional theory and the volute the principle of constant angular momentum. The ANSYS-CFX software was used for the simulation. The turbulence model adopted was the SST. The simulation provided the characteristic curves, the pressure and velocity distribution, and the static and total pressure values at impeller and volute exit. An analysis of the behavior of the pressure plots, and the loss and recovery of pressure in the volute was performed. The results indicated the characteristic curves, the pressure and velocity distribution were consistent with the turbomachinery theory. The pressure values showed the static pressure at volute exit was smaller than impeller exit for some flow rate. It caused the pressure recovery coefficient negative.  This work indicated to be possible design a centrifugal fan applying the one-dimensional theory and optimize it with the CFD tool.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Shao-Wen Chen ◽  
Christopher Macke ◽  
Takashi Hibiki ◽  
Mamoru Ishii ◽  
Yang Liu ◽  
...  

In order to study the two-phase flow behaviors of a horizontal bubble plume in a tank, experimental tests along with computational fluid dynamics (CFD) simulations were carried out in this paper. An experimental facility was designed and constructed which allows air–water bubble jet being injected horizontally into a water tank by three-parallel injector nozzles with different gas and liquid superficial velocities (〈jg〉in = 2.7–5.7 m/s and 〈jf〉in = 1.8–3.4 m/s). Two sizes of injector nozzles (D = 0.053 m and 0.035 m) were tested to examine the injector size effect. Important parameters including void fraction, fluid velocity, bubble Sauter mean diameter, and their distributions in the tank were measured and analyzed. In addition to the experimental work, selected flow conditions were simulated with ANSYS CFX 13.0. Compared with the experimental data, the present CFD simulation can predict the general trends of void and flow distributions and the recirculation fluid velocity with an accuracy of ±30%. The present CFD simulation methodology has been validated by the experimental results and can be applied to bubble plume analyses and design.


2013 ◽  
Vol 9 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Eleonora Bottani ◽  
Gino Ferretti ◽  
Michele Manfredi ◽  
Giuseppe Vignali

AbstractThis work aims to analyze and predict the thermal pasteurization process for two types of fresh pasta, by means of computational fluid dynamic (CFD) simulation. The types of pasta considered are “ravioli” filled of meat and “orecchiette”, without filling. Thanks to many studies on pasta properties, some parameters, such as thermal conductivity and heat capacity, are previously determined for both products. CFD simulations are, thus, performed using ANSYS CFX code version 14.5 in a transient state (after 150 s for ravioli and after 45 s for orecchiette), to evaluate the pasteurization temperature and the P-value reached on the surface of the orecchiette and at the core of the ravioli, as a function of the process time. The heat exchange takes place in a pasteurization tunnel by means of water vapor at ~371 K. Experimental tests are finally performed to validate the simulation model of heat exchange. Results show a good agreement between the simulated results and the real pasteurization process and confirm the potential usefulness of the simulation model to evaluate the process performance.


Author(s):  
Jeong Hyo Park ◽  
Bong Ju Kim ◽  
Jung Kwan Seo ◽  
Jae Sung Jeong ◽  
Byung Keun Oh ◽  
...  

The aim of this study was to evaluate the load characteristics of steel and concrete tubular members under jet fire, with the motivation to investigate the jet fire load characteristics in FPSO topsides. This paper is part of Phase II of the joint industry project on explosion and fire engineering of FPSOs (EFEF JIP) [1]. To obtain reliable load values, jet fire tests were carried out in parallel with a numerical study. Computational fluid dynamics (CFD) simulation was used to set up an adiabatic wall boundary condition for the jet fire to model the heat transfer mechanism. A concrete tubular member was tested under the assumption that there is no conduction effect from jet fire. A steel tubular member was tested and considered to transfer heat through conduction, convection, and radiation. The temperature distribution, or heat load, was analyzed at specific locations on each type of member. ANSYS CFX [2] and Kameleon FireEx [3] codes were used to obtain similar fire action in the numerical and experimental methods. The results of this study will provide a useful database to determine design values related to jet fire.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251817
Author(s):  
Paulo Roberto Freitas Neves ◽  
Turan Dias Oliveira ◽  
Tarcísio Faustino Magalhães ◽  
Paulo Roberto Santana dos Reis ◽  
Luzia Aparecida Tofaneli ◽  
...  

The transmission of SARS-CoV-2 through contact with contaminated surfaces or objects is an important form of transmissibility. Thus, in this study, we evaluated the performance of a disinfection chamber designed for instantaneous dispersion of the biocidal agent solution, in order to characterize a new device that can be used to protect individuals by reducing the transmissibility of the disease through contaminated surfaces. We proposed the necessary adjustments in the configuration to improve the dispersion on surfaces and the effectiveness of the developed equipment. Computational Fluid Dynamics (CFD) simulations of the present technology with a chamber having six nebulizer nozzles were performed and validated through qualitative and quantitative comparisons, and experimental tests were conducted using the method Water-Sensitive Paper (WSP), with an exposure to the biocidal agent for 10 and 30 s. After evaluation, a new passage procedure for the chamber with six nozzles and a new configuration of the disinfection chamber were proposed. In the chamber with six nozzles, a deficiency was identified in its central region, where the suspended droplet concentration was close to zero. However, with the new passage procedure, there was a significant increase in wettability of the surface. With the proposition of the chamber with 12 nozzles, the suspended droplet concentration in different regions increased, with an average increase of 266%. The experimental results of the new configuration proved that there was an increase in wettability at all times of exposure, and it was more significant for an exposure of 30 s. Additionally, even in different passage procedures, there were no significant differences in the results for an exposure of 10 s, thereby showing the effectiveness of the new configuration or improved spraying and wettability by the biocidal agent, as well as in minimizing the impact caused by human factor in the performance of the disinfection technology.


2020 ◽  
Vol 92 (10) ◽  
pp. 1459-1468
Author(s):  
Aleksander Olejnik ◽  
Adam Dziubiński ◽  
Łukasz Kiszkowiak

Purpose This study aims to create 6-degree of freedom (SDOF) for computational fluid dynamics (CFD) simulations of body movement, and to validate using the experimental data for empty tank separation from I-22 Iryda jet trainer. The procedure has an ability to be modified or extended, to simulate, for example, a sequential release from the joints. Design/methodology/approach A set of CFD simulations are calculated. Both the SDOF procedure and the CFD simulation settings are validated using the wind tunnel data available for the aircraft. Findings The simulation using designed procedure gives predictable results, but offers availability to be modified to represent external forces, i.e. from body interaction or control system without necessity to model the control surfaces. Practical implications The procedure could be used to model the separation of external stores and design the deployment of anti-radar chaff, flares or ejection seats. Originality/value The work presents original work, caused by insufficient abilities of original SDOF procedure in ANSYS code. Additional value is the ability of the procedure to be easily modified.


2018 ◽  
Vol 240 ◽  
pp. 05005
Author(s):  
Milind Devle ◽  
Ankur Garg ◽  
Darci Cavali

In general a multi-door refrigerator machine compartment comprises of fan, condenser, compressor, control box, drain tray, and drain tubes. The performance of machine compartment depends upon the efficiency of heat extraction or heat exchange from heat generating components such as condenser and compressor. The efficiency of heat exchange can be improved by addressing two major factors, namely (1) Air bypass and (2) Hot air recirculation. The hot air recirculation in the machine compartment for builtin multi-door refrigerator configuration is the focus of this study. The results from Computational Fluid Dynamics (CFD) simulations show that efficiency of heat exchange for built-in application is lower than that for free-standing configuration. Recirculation of hot air and reduction in airflow are the two major factors which contribute towards the variation in machine compartment performance. The CFD simulations were coupled with Partial Factorial Design of Experiment (DoE) approach to systematically investigate the effect of variables such as (a) side gap and top gap between kitchen cabinetry and the refrigerator, (b) the baffle/flap (i.e. back and bottom of machine compartment) on the performance effectiveness of machine compartment. The results of the simulation provided critical design improvement directions resulting in performance improvement. Furthermore, the CFD simulation results were also compared to test data and the results compared favourably.


Author(s):  
Brian Dotson ◽  
Kent Eshenberg ◽  
Chris Guenther ◽  
Thomas O’Brien

The design of high-efficiency lower-emission coal-fed power plants is facilitated by the extensive use of computational fluid dynamics (CFD) simulations. This paper describes work conducted at the National Energy Technology Laboratory (NETL) and Pittsburgh Supercomputing Center (PSC) to provide an environment for the immersive three-dimensional visualization of CFD simulation results. A low-cost high-resolution projection system has been developed in the visualization lab at NETL. This multi-wall system consists of four projection screens, three of which are tiled into four quadrants. The graphics for the multi-wall system are rendered using a cluster of eight personal computers. A high-level visualization interface named Mavis has also been developed to combine the powerful 3D modules of OpenDX with methods developed at NETL for studying multiphase CFD data. With Python, a completely new OpenDX user interface was built that extends and simplifies the features of a basic graphics library.


Author(s):  
Daniel Fonseca de Carvalho e Silva ◽  
Paulo Roberto Pagot ◽  
Gilder Nader ◽  
Paulo Jose´ Saiz Jabardo

The offshore helideck wind flow is usually subject to many interferences. The helideck airspace velocity and turbulence fields are important issues to promote safe helicopter take-off and landing operations. The current work brings some CFD results of a helideck wind flow 3D-field defined by the local conditions and constrained by the FPSO structure. A discussion about the chosen CFD boundary conditions is also presented. These CFD results are compared with the wind tunnel model-scale velocity and turbulence measurements. The wind tunnel measurements were performed with use of two different techniques: Particle Image Velocimetry (PIV) and Constant Temperature Anemometry (CTA). The British standard CAP437: Offshore Helideck Design Criteria is examined and suggestions are made herein. The CFD simulations were conducted using the ANSYS CFX software.


Author(s):  
Dirk Witteck ◽  
Derek Micallef ◽  
Ronald Mailach

Usually, in a turbine an uneven number of blades are selected for vane and blade rows to reduce the level of interaction forces. To consider all unsteady flow phenomena within a turbine the computation of the full annulus is required causing considerable computational cost. Transient blade row methods using few passages reduce the numerical effort significantly. Nevertheless, those approaches provide accurate results. This contribution presents three different unsteady approaches to compare the accuracy and the computational effort, using a full annulus unsteady CFD simulation as a reference. The first approach modifies the blade-to-blade ratio whereas the second method scales the circumferential flow pattern to reach spatial and temporal periodicity. Third approach is based on time-inclining method to overcome unequal blade pitches with less numerical effort. All unsteady CFD simulations are carried out for the transonic test turbine VKI BRITE EURAM using the commercial CFD solver ANSYS CFX 14.5. The resulting unsteady pressure disturbances and blade forces of the different transient blade row methods are compared to each other as well as to experimental data. Finally, the accuracy and the computational costs are discussed in more detail.


Sign in / Sign up

Export Citation Format

Share Document