Theoretical and Experimental Investigation on Rotor Dynamic Behavior of Bladeless Turbine for Innovative Cycles

Author(s):  
Paolo Silvestri ◽  
Alberto Traverso ◽  
Federico Reggio ◽  
Theofilos Efstathiadis

Abstract This paper focuses on rotor dynamic investigation of a bladeless turbine, or Tesla turbine, for application to innovative small scale cycles. Tesla rotor consists of a shaft with several co-rotating disks with small gaps between each other. The flow through the disks creates a momentum exchange by viscous effect, motoring the shaft. Thanks to its simplicity and low cost, the Tesla expander is attractive for energy harvesting and waste heat recovery from low/medium temperature in small and micro scale applications. Rotor assembly and its parts may present dynamic criticalities, due to their structural characteristics: to predict and ensure low vibrations during operations, numerical and experimental studies have been carried out on some prototypes. The activity started considering a non-rotating single Tesla disk both in free and real constrained configuration: an experimental modal analysis was performed, whose results were used to validate a disk numerical model. In this case, an analytical approach with a simplified geometry assumption was considered. All methods results were correlated each other and discrepancies have been identified and analysed. Furthermore, the investigation of a single disk rotor vibrational behaviour has been extended from static conditions to rotating conditions. Numerical analysis has been carried on taking into account the effect of gyroscopic couples and centrifugal field generated by disk rotation. In parallel, a corresponding experimental activity has been done using a dedicated test rig which allowed to perform vibrational operational measurement while the disk was in motion. Campbell diagram of the single rotating disk on the shaft has been obtained from numerical and experimental analysis allowing to identify system dynamic behaviour and to deepen aspects related to critical speeds. Finally, a whole rotor model has been developed, allowing the characterization of the dynamic behaviour of a fully assembled turbine rotor. The developed models, validated with experiments, are powerful tools that can predict the bladeless expander vibrational behaviour at the early phase of design.

Author(s):  
Christian Frilund ◽  
Esa Kurkela ◽  
Ilkka Hiltunen

AbstractFor the realization of small-scale biomass-to-liquid (BTL) processes, low-cost syngas cleaning remains a major obstacle, and for this reason a simplified gas ultracleaning process is being developed. In this study, a low- to medium-temperature final gas cleaning process based on adsorption and organic solvent-free scrubbing methods was coupled to a pilot-scale staged fixed-bed gasification facility including hot filtration and catalytic reforming steps for extended duration gas cleaning tests for the generation of ultraclean syngas. The final gas cleaning process purified syngas from woody and agricultural biomass origin to a degree suitable for catalytic synthesis. The gas contained up to 3000 ppm of ammonia, 1300 ppm of benzene, 200 ppm of hydrogen sulfide, 10 ppm of carbonyl sulfide, and 5 ppm of hydrogen cyanide. Post-run characterization displayed that the accumulation of impurities on the Cu-based deoxygenation catalyst (TOS 105 h) did not occur, demonstrating that effective main impurity removal was achieved in the first two steps: acidic water scrubbing (AWC) and adsorption by activated carbons (AR). In the final test campaign, a comprehensive multipoint gas analysis confirmed that ammonia was fully removed by the scrubbing step, and benzene and H2S were fully removed by the subsequent activated carbon beds. The activated carbons achieved > 90% removal of up to 100 ppm of COS and 5 ppm of HCN in the syngas. These results provide insights into the adsorption affinity of activated carbons in a complex impurity matrix, which would be arduous to replicate in laboratory conditions.


Author(s):  
Abhisek Banerjee ◽  
Sukanta Roy ◽  
Prasenjit Mukherjee ◽  
Ujjwal K. Saha

Although considerable progress has already been achieved in the design of wind turbines, the available technical designs are not yet adequate to develop a reliable wind energy converter especially meant for small-scale applications. The Savonius-style wind turbine appears to be particularly promising for the small-scale applications because of its design simplicity, good starting ability, insensitivity to wind directions, relatively low operating speed, low cost and easy installation. However, its efficiency is reported to be inferior as compared to other wind turbines. Aiming for that, a number of investigations have been carried out to increase the performance of this turbine with various blade shapes. In the recent past, investigations with different blade geometries show that an elliptic-bladed turbine has the potential to harness wind energy more efficiently. In view of this, the present study attempts to assess the performance of an elliptic-bladed Savonius-style wind turbine using 2D unsteady simulations. The SST k-ω turbulence model is used to simulate the airflow over the turbine blades. The power and torque coefficients are calculated at rotating conditions, and the results obtained are validated with the wind tunnel experimental data. Both the computational and experimental studies indicate a better performance with the elliptical blades. Further, the present analysis also demonstrates improved flow characteristics of the elliptic-bladed turbine over the conventional semi-circular design.


2021 ◽  
Vol 11 (13) ◽  
pp. 6210
Author(s):  
Yu Hou ◽  
Qi Zhao ◽  
Yu Guo ◽  
Xionghao Ren ◽  
Tianwei Lai ◽  
...  

Gas foil bearing has been widely used in high-speed turbo machinery due to its oil-free, wide temperature range, low cost, high adaptability, high stability and environmental friendliness. In this paper, state-of-the-art investigations of gas foil bearings are reviewed, mainly on the development of the high-speed turbo machinery in China. After decades of development, progress has been achieved in the field of gas foil bearing in China. Small-scale applications of gas foil bearing have been realized in a variety of high-speed turbo machinery. The prospects and markets of high-speed turbo machinery are very broad. Various high-speed turbomachines with gas foil bearings have been developed. Due to the different application occasions, higher reliability requirements are imposed on the foil bearing technology. Therefore, its design principle, theory, and manufacturing technology should be adaptive to new application occasions before mass production. Thus, there are still a number of inherent challenges that must be addressed, for example, thermal management, rotor-dynamic stability and wear-resistant coatings.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Lucía Abarca-Cabrera ◽  
Paula Fraga-García ◽  
Sonja Berensmeier

AbstractThe major interest in nanoparticles as an application platform for biotechnology arises from their high surface-to-volume ratio. Iron oxide nanoparticles (IONPs) are particularly appealing due to their superparamagnetic behavior, which enables bioseparation using external magnetic fields. In order to design advanced biomaterials, improve binding capacities and develop innovative processing solutions, a thorough understanding of the factors governing organic-inorganic binding in solution is critical but has not yet been achieved, given the wide variety of chemical and physical influences. This paper offers a critical review of experimental studies of the interactions between low cost IONPs (bare iron oxides, silica-coated or easily-functionalized surfaces) and the main groups of biomolecules: proteins, lipids, nucleic acids and carbohydrates. Special attention is devoted to the driving forces and interdependencies responsible of interactions at the solid-liquid interface, to the unique structural characteristics of each biomolecular class, and to environmental conditions influencing adsorption. Furthermore, studies focusing on mixtures, which are still rare, but absolutely necessary to understand the biocorona, are also included. This review concludes with a discussion of future work needed to fill the gaps in knowledge of bio-nano interactions, seeking to improve nanoparticles’ targeting capabilities in complex systems, and to open the door for multipurpose recognition and bioseparation processes.


Author(s):  
Stefano Clemente ◽  
Diego Micheli ◽  
Mauro Reini ◽  
Rodolfo Taccani

In the last years one of the main research topics in energy field is represented by Organic Rankine Cycles (ORCs), due to their applicability in energy recovery from waste heat and in distributed combined heat and power (CHP) generation, particularly in small and micro scale systems. One of the key devices of the cycle is the expander: it must have a limited cost (like all the other components, in order to ensure the economic feasibility), but also a high efficiency, since the temperature of the heat source is often low and then the cycle efficiency is inherently scarce. In the first part of this paper a literature review on various positive-displacement expanders is presented, in order to outline their performances and their application field. Then, the numerical model of a volumetric reciprocating expander is implemented. This model, and another one previously developed to simulate scroll expanders, is combined with a thermodynamic model of the whole ORC system, so that a comparison between the two technologies can be carried out. The results confirm the possibility of realizing small scale energy recovery and cogeneration (CHP) systems with acceptable electrical efficiency also adopting low-cost components, directly derived from large scale industrial components.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


Sign in / Sign up

Export Citation Format

Share Document