Effect of Snubbers and Lacing Wire on Aerodynamic Performance of Last Stage Steam Turbine

Author(s):  
P. Sreekumar ◽  
Mahesh K. Varpe

Abstract The aerodynamics design of a steam turbine stage is an agreement between the performance requirements and the mechanical limitations. The design of last stage of the low-pressure steam (LP) turbine is the most complicated because of the blade twist and a tapered blade along with high aspect ratio due to the sharp increase in the specific volume of the steam during its expansion. The choice of higher aspect ratio for increased power generation makes the turbine blade experience the vibration due to lower modal frequencies which depend on the running speed of a turbine. Therefore, the sensitive behavior of these blades is reduced by damping the blade vibrations which comes with the penalty of aerodynamic performance. The investigation reported here discusses the impact of lacing wire and snubber mounted at 70% blade span. Both, the lacing wire and snubber aligned parallel to the rotor axis deteriorates the efficiency by 0.75% and 1.7% respectively. However, the aerodynamically shaped snubber aligned with the streamline direction recovers the efficiency to that of base line. The mechanism of streamwise aligned snubber in containing aerodynamic performance loss is quite interesting and is being discussed.

Author(s):  
Hiteshkumar Mistry ◽  
Manisekaran Santhanakrishnan ◽  
John Liu ◽  
Alexander Stein ◽  
Subhrajit Dey ◽  
...  

Modern steam turbines often utilize very long last stage buckets (LSB’s) in their low-pressure sections to improve efficiency. Some of these LSB’s can range in the order of 5 feet long. These long buckets (aka “blades”) are typically supported at their tip by a tip-shroud and near the mid span by a part span shroud or part span connector (PSC). The PSC is a structural element that connects all the rotor blades, generally at the mid span. It is primarily designed to address various structural issues, often with little attention to its aerodynamic effects. The objective of the current work is to quantify the impact of PSC on aerodynamic performance of the last stage of a LP steam turbine by using detailed CFD analyses. A commercial CFD solver, ANSYS CFX™, is used to solve the last stage domain by setting steam as the working fluid with linear variation of specific heat ratio with temperature. A tetrahedral grid with prismatic layers near the solid walls is generated using ANSYS WORKBENCH™. The results show a cylindrical PSC reduces the efficiency of the last stage by 0.32 pts, of which 0.20 pts is due to the fillet attaching the PSC to the blade. The results also show insignificant interaction of the PSC with the bucket tip aerodynamics. The work presents a detailed flow field analysis and shows the impact of PSC geometry on the aerodynamic performance of last stage of steam turbine. Present work is useful to turbine designer for trade-off studies of performance and reliability of LSB design with or without PSC.


Author(s):  
Derek Taylor ◽  
Gurnam Singh ◽  
Phil Hemsley ◽  
Martin Claridge

The design of an effective diffuser for a given last stage blade of an LP turbine is known to be highly dependent on the size and shape of the exhaust hood in which it is located. For retrofit steam turbines in particular, where a new last stage blade and diffuser are fitted into an existing exhaust hood, the shapes and sizes of the exhaust box have been seen to vary significantly from one contract to the next. An experimental parametric study of diffuser lips and exhaust hood configurations has been run on a model test turbine rig at GE Power to investigate the impact of various geometric parameters on the performance of the diffusers. Improved testing and post-processing methodologies means the diffuser performance has been obtained for a greater number of geometric configurations than was previously typically possible. The results of these experiments are compared with numerical calculations and confirm the accuracy of the standard in-house diffuser design tools. Key geometric parameters are identified from the test data and used to generate improved diffuser design guidelines.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Gursharanjit Singh ◽  
Andrew P. S. Wheeler ◽  
Gurnam Singh

The present study aims to investigate the interaction between a last-stage steam turbine blade row and diffuser. This work is carried out using computational fluid dynamics (CFD) simulations of a generic last-stage low-pressure (LP) turbine and axial–radial exhaust diffuser attached to it. In order to determine the validity of the computational method, the CFD predictions are first compared with data obtained from an experimental test facility. A computational study is then performed for different design configurations of the diffuser and rotor casing shapes. The study focuses on typical flow features such as effects of rotor tip leakage flows and subsequent changes in the rotor–diffuser interactions. The results suggest that the rotor casing shape influences the rotor work extraction capability and yields significant improvements in the diffuser static pressure recovery.


Author(s):  
Victor Filippenko ◽  
Boris Frolov ◽  
Andrey Chernobrovkin ◽  
Bin Zhou ◽  
Amir Mujezinovic´ ◽  
...  

Steam turbine power plant operations during start up and during operation at high exhaust pressure have the potential to result in an extremely low steam flow through the Low Pressure (LP) turbine. This inevitably leads to windage and results in significant temperature increases in the Last Stage Buckets (LSBs). High steam temperature can also initiate potential thermo-mechanical failure of the LSBs. Temperature prediction for a wide range of operational regimes imposes a significant challenge to modern LSB design. Extensive numerical and experimental investigations on an LP section steam turbine with LSBs of different lengths at typical low flow operation conditions have been conducted with the primary focus on LSB temperature prediction. A Low Pressure Development Turbine (LPDT) test rig was used to help develop and validate Computational Fluid Dynamic (CFD) based temperature prediction methodologies, which later were applied to predict operational temperatures for multiple LP section configurations under development. This article presents some important results of LPDT test measurements as well as CFD predictions of LP turbine flow structures and temperature distributions in last stage buckets.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
Nicola Maceli ◽  
...  

This work aims at investigating the impact of axial gap variation on aerodynamic performance of a high-pressure steam turbine stage. Numerical and experimental campaigns were conducted on a 1.5-stage of a reaction steam turbine. This low speed test rig was designed and operated in different operating conditions. Two different configurations were studied in which blades axial gap was varied in a range from 40% to 95% of the blade axial chord. Numerical analyses were carried out by means of three-dimensional, viscous, unsteady simulations, adopting measured inlet/outlet boundary conditions. Two sets of measurements were performed: steady measurements, from one hand, for global performance estimation of the whole turbine, such as efficiency, mass flow, and stage work; steady and unsteady measurements, on the other hand, were performed downstream of rotor row, in order to characterize the flow structures in this region. The fidelity of computational setup was proven by comparing numerical results to measurements. Main performance curves and spanwise distributions have shown a good agreement in terms of both shape of curves/distributions and absolute values. Moreover, the comparison of two-dimensional maps downstream of rotor row has shown similar structures of the flow field. Finally, a comprehensive study of the axial gap effect on stage aerodynamic performance was carried out for four blade spacings (10%, 25%, 40%, and 95% of S1 axial chord) and five aspect ratios (1.0, 1.6, 3, 4, and 5). The results pointed out how unsteady interaction between blade rows affects stage operation, in terms of pressure and flow angle distributions, as well as of secondary flows development. The combined effect of these aspects in determining the stage efficiency is investigated and discussed in detail.


2019 ◽  
Vol 49 (3) ◽  
pp. 17-32
Author(s):  
Adam Charchalis ◽  
Tomasz Dyl ◽  
Agata Wieczorska

Abstract The paper presents the analyze the lifetime of the HP steam turbine hull for the EC Gdynia TG1 combined heat and power plant as part of the renovation. The impact of exploitation on changes in mechanical properties of the steam turbine hulls was determined. At the preliminary material tests were carried out, qualifying the hull of the steam turbine to undertake the revitalization process. Then, after non-destructive testing, trepanation samples were taken from the cold zone and the hot hull, which were subjected to mechanical properties tests. The next stage of work was the revitalization process including hardening and tempering. The mechanical properties and metallographic were carried out testing. In the next stage of work, non-destructive testing was performed to detect cracks and a decision was made to repair these areas by welding. The last stage of the work includes an analysis of the vitality of the steam turbine hull after revitalization.


2021 ◽  
Author(s):  
Ashima Malhotra ◽  
Shraman Goswami ◽  
Pradeep A M

Abstract The aerodynamic performance of a compressor rotor is known to deteriorate due to surface roughness. It is important to understand this deterioration as it impacts the overall performance of the engine. This paper, therefore, aims to numerically investigate the impact of roughness on the performance of an axial compressor rotor at different rotational speeds. In this numerical study, the simulations are carried out for NASA Rotor37 at 100%, 80%, and 60% of its design speed. with and without roughness on the blade surface. These speeds are chosen because they represent different flow regimes. The front stages of a multistage compressor usually have a supersonic or transonic regime whereas the middle and aft stages have a subsonic regime. Thus, these performance characteristics can give an estimate of the impact on the performance of a multistage compressor. At 100% speed (design speed), the relative flow is supersonic, at 80% of design speed, the relative flow is transonic and at 60% of design speed, the relative flow is subsonic. Detailed flow field investigations are carried out to understand the underlying flow physics. The results indicate that, for the same amount of roughness, the degradation in the performance is maximum at 100% speed where the rotor is supersonic, while the impact is minimum at 60% speed where the rotor is subsonic. Thus, the rotor shock system plays an important role in determining the performance loss due to roughness. It is also observed that the loss increases with increased span for 100% and 80% speeds, but for 60% speed, the loss is almost constant from the hub to the shroud. This is because, with the increased span, the shock strength increases for 100% and 80% speeds, whereas at 60% speed flow is subsonic.


Author(s):  
Michal Hoznedl ◽  
Michal Kolovratník ◽  
Ladislav Tajč ◽  
Andreas P. Weiß ◽  
Lukáš Mrózek

In the paper the behaviour of the five-stage experimental steam turbine 10 MW is described during the expansion transition from superheated steam to wet steam as well as the influence of wet steam on the flow path efficiency. The influence of wet steam occurrence on one to four last stages is given by setting the inlet steam parameters. The wetness of steam behind the last stage is calculated using two methods, first by enthalpy drop with the output measured by water brake and second by an optical probe. The results of both methods are compared. The impact of steam wetness increasing on a decrease in turbine efficiency is observed. In the paper the influence of steam wetness on the individual stage efficiency is also described and wetness loss coefficient is determined. Using the optical probe, assessment of poly-disperse structure of fine droplets is carried out, which is presented here by Sauter mean diameter. A pneumatic probe is used to define the distribution of velocities and pressures along the blade length after the last stage.


Author(s):  
Chang Luo ◽  
Liming Song ◽  
Jun Li ◽  
Zhenping Feng ◽  
Shouhong Cao ◽  
...  

A new calculation model is proposed to simulate flows in the steam turbine stages with balance holes in this paper. The model describes the flows in a 2.5 stage turbine with focus on the second stage and the corresponding seals, balance holes and disk cavities. The aerodynamic performance of the turbine stages is predicted by using a three-dimensional Reynold-Averaged Navier-Stokes (RANS) solver. The Spalart-Allmaras one equation turbulence model is adopted, and the RANS solver is run in steady mode using the mixing plane approach. In order to analyze the impact of leakage flow on main flow, the aerodynamic performance of the ideal flow path turbine stages (without balance holes and seals) is also calculated. The numerical results show that the total-total efficiency of the turbine stages with balance holes is 1.81% lower than that of ideal flow path turbine stages. The flow characteristics in the seals, disk cavities and balance holes and their influence on the mainstream are described. Finally, the influence of the balance hole diameter and radius crossing the balance hole axis on the turbine stage performance is studied. The variations of the torque, axial thrust and relative efficiency with the diameter and radius are presented respectively.


Sign in / Sign up

Export Citation Format

Share Document