Parametric Experimental and Numerical Study of LP Diffuser and Exhaust Hoods

Author(s):  
Derek Taylor ◽  
Gurnam Singh ◽  
Phil Hemsley ◽  
Martin Claridge

The design of an effective diffuser for a given last stage blade of an LP turbine is known to be highly dependent on the size and shape of the exhaust hood in which it is located. For retrofit steam turbines in particular, where a new last stage blade and diffuser are fitted into an existing exhaust hood, the shapes and sizes of the exhaust box have been seen to vary significantly from one contract to the next. An experimental parametric study of diffuser lips and exhaust hood configurations has been run on a model test turbine rig at GE Power to investigate the impact of various geometric parameters on the performance of the diffusers. Improved testing and post-processing methodologies means the diffuser performance has been obtained for a greater number of geometric configurations than was previously typically possible. The results of these experiments are compared with numerical calculations and confirm the accuracy of the standard in-house diffuser design tools. Key geometric parameters are identified from the test data and used to generate improved diffuser design guidelines.

Author(s):  
Romuald Rzadkowski ◽  
Jan Surwiło ◽  
Leszek Kubitz ◽  
Piotr Lampart ◽  
Mariusz Szymaniak

Several high vibration amplitude problems have been reported regarding the slender last stage blades of commercial LP steam turbines. This paper presents a numerical study of unsteady forces acting on rotor blades using ANSYS CFX. A 3D transonic viscous flow through the stator and rotor blades with an exhaust hood was modelled. The last stage was modelled as a full blade annulus, so that the axial, radial and circumferential distribution of flow patterns and blade forces could be examined. An unsteady flow analysis was conducted on a typically designed last stage and exhaust diffuser, with measured and calculated downstream static pressure distribution as the outlet boundary condition. The results showed that under off-design conditions, vortices occurred in the last stage and diffuser. Unsteady aerodynamic forces were found at high frequencies (stator passing frequencies) and low frequencies (generated from asymmetric pressure distributions behind the rotor), with the relative dominance of these forces/frequencies shifting as a function of radial span. An FFT analysis was carried out. Three sections were investigated: the hub, midspan and peripheral (tip) section. The steady pressure behind the rotor blade was compared with experimental results in the LP last stage behind the rotor blades and in a specified cross-section of the exhaust hood. The lower frequency unsteady forces had a higher relative contribution towards the tip of the blade.


Author(s):  
P. Sreekumar ◽  
Mahesh K. Varpe

Abstract The aerodynamics design of a steam turbine stage is an agreement between the performance requirements and the mechanical limitations. The design of last stage of the low-pressure steam (LP) turbine is the most complicated because of the blade twist and a tapered blade along with high aspect ratio due to the sharp increase in the specific volume of the steam during its expansion. The choice of higher aspect ratio for increased power generation makes the turbine blade experience the vibration due to lower modal frequencies which depend on the running speed of a turbine. Therefore, the sensitive behavior of these blades is reduced by damping the blade vibrations which comes with the penalty of aerodynamic performance. The investigation reported here discusses the impact of lacing wire and snubber mounted at 70% blade span. Both, the lacing wire and snubber aligned parallel to the rotor axis deteriorates the efficiency by 0.75% and 1.7% respectively. However, the aerodynamically shaped snubber aligned with the streamline direction recovers the efficiency to that of base line. The mechanism of streamwise aligned snubber in containing aerodynamic performance loss is quite interesting and is being discussed.


Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

Abstract Most of the world’s power is produced by large steam turbines using fossil fuel, nuclear and geothermal energy. The LP exhaust hoods of these turbines are known to contribute significantly to the losses within the turbine, hence a minor improvement in their performance, which results in a lower backpressure and thus higher enthalpy drop for the steam turbine, will give a considerable benefit in terms of fuel efficiency. Understanding the flow field and the loss mechanisms within the exhaust hood of LP steam turbines is key to developing better optimized exhaust hood systems. A detailed analysis of loss generation within the exhaust hood was done by the authors [1]. It was found that most losses occur at the upper hood and are caused by the swirling flows, which mostly start at the diffuser outlet, especially for the top diffuser inlet sector flows that have a complex path to the condenser. The authors further numerically investigated the influence of hood height variation on performance of an LP turbine exhaust hood [2], which further contributed to the knowledge of the loss mechanisms. With the loss mechanisms in exhaust hoods reasonably well understood, flow deflection at the upper hood is investigated in the current paper. The deflection is aimed at minimizing the intensity of the vortices formed thus reducing the exhaust losses. The deflector configurations analyzed are modifications of the walls of the reference configuration’s outer casing. The numerical models of the reference configuration which are based on a scaled axial-radial diffuser test rig operated by ITSM have already been validated by the authors at design and overload operating conditions and three tip jet Mach numbers (0, 0.4 and 1.2)[1]. Deflector configurations investigated are found to re-direct the flow at the upper hood and minimize the intensity of the swirling flows hence leading to improvement in performance of LP steam turbine exhaust hoods. The best performing deflector configuration is found to give a considerable improvement in performance of 20% at design load and 40% at overload both at tip jet Mach number of 0.4 (corresponding to shrouded last stage blades). At design load and tip jet Mach number of 1.2 (corresponding to unshrouded last stage blades), the improvement is found to be moderate. About 7% performance increase is observed.


Author(s):  
Rui Yang ◽  
Jiandao Yang ◽  
Zeying Peng ◽  
Liqun Shi ◽  
Aping He ◽  
...  

The aerodynamic performance and internal flow characteristics of the last stage and exhaust hood for steam turbines is numerically investigated using the Reynolds-Averaged Navier-Stokes (RANS) solutions based on the commercial CFD software ANSYS CFX. The full last stage including 66 stator blades and 64 rotor blades coupling with the exhaust hood is selected as the computational domain. The aerodynamic performance of last stage and static pressure recovery coefficient of exhaust hood at five different working conditions is conducted. The interaction between the last stage and exhaust hood is considered in this work. The effects of the non-uniform aerodynamic parameters along the rotor blade span on the static pressure recovery coefficient of the non-symmetric geometry of the exhaust hood are studied. The numerical results show that the efficiency of the last stage has the similar values ranges from 89.8% to 92.6% at different working conditions. In addition, the similar static pressure recovery coefficient of the exhaust hood was observed at five working conditions. The excellent aerodynamic performance of the exhaust hood was illustrated in this work.


Author(s):  
Tao Fan ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Bi Sun

Computational fluid dynamics is widely used in the aerodynamic performance analysis of the low pressure exhaust system (LPES) which consists of the exhaust hood and condenser neck. However, most of the former studies analyzed the exhaust system separately without considering the effect on flow field from the last stage. In order to get the detailed information of flow field in LPES of steam turbines and reduce energy loss, a numerical model includes condenser neck, exhaust hood and last stage was constructed. This model can describe the effect of unsymmetrical inlet flow on the aerodynamic performance of LPES, so the effect of the inhomogeneous flow from the last stage was taken into account. The Reynolds averaged N-S equations with RNG k-ε turbulence model were adopted to analyze the flow field in the exhaust system considering the interaction between the exhaust system and the last stage, the mixing plane approach was used. The combined model can provide more reasonable numerical results of LPES, it shows that the inhomogeneous flow from the last stage is one of the main reasons leading to flow separation in diffuser. The influence of inner low pressure heater and the diffuse function of the condenser neck structure are the main reasons for the nonuniform velocity distribution of the flow field at the LPES outlet. Furthermore, based on the numerical results, an optimal LPES which has better aerodynamic performance and more reasonable flow is obtained. The optimal structure has low steam resistance and low exhaust pressure, so it can increase the efficiency of turbine.


Author(s):  
B. R. Haller ◽  
T. S. Rice ◽  
R. Sigg

In Steam Turbines, under low flow conditions, the flow structure on the long last stage blades is complex. The rotor blades create outward radial flow. Recirculations are setup near the tip in the gap between the fixed and moving blades, and near the hub downstream of the moving blade. The blade carries negative loading and encounters gross flow separations. In this environment, fluctuations in pressure are detected rotating at about half of the rotor speed. Some similarities exist with rotating stall, as found in compressors. In the validation of a new blade design, checks are therefore included to ensure that the rotating excitation does not pass over a natural frequency of the blading. In turn, this can reduce the available design space. A less restrictive approach is to consider alleviation techniques. A promising candidate is a scheme where steam jets are directed into the flow, onto the LSB, from the outer boundary. Jets have been introduced and tested on a 1/3rd scale multistage steam turbine. The test turbine is both aerodynamically and mechanically representative of a full size machine. The blowing scheme was shown to reduce and then practically eliminate the rotating pressure pattern. 3D CFD computations reveal the major influence of the jets. The solution is elegant because it does not lead to loss of efficiency or design space.


Author(s):  
Jun Li ◽  
Zhigang Li ◽  
Zhenping Feng

The static pressure recovery coefficient of the exhaust hood has significant impact on the aerodynamic performance of the low pressure cylinder for steam turbines. Numerical investigations on the aerodynamic performance of the exhaust hood and full last stage with consideration of the rotor tip leakage were presented in this paper. Three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions and k–ε turbulent model were utilized to analyze the static pressure recovery performance of the exhaust hood using the commercial CFD software ANSYS-CFX. Effect of the last stage rotor tip leakage flow on the aerodynamic performance of the downstream exhaust hood was conducted by comparison of the computational domains for the exhaust hood and full last stage with and without tip clearance. The numerical results show that the last stage rotor tip leakage jet can suppress the flow separation near the diffuser wall of the exhaust hood and improve its static pressure recovery performance. The detailed flow fields of the exhaust hood with and without consideration of the rotor tip leakage flow were also illustrated and corresponding flow mechanism was discussed.


Author(s):  
Jing-Lun Fu ◽  
Jian-Jun Liu ◽  
Si-Jing Zhou

Exhaust hood of large steam turbines is designed to recover the leaving kinetic energy of the last stage turbine while guiding the flow from the turbine to the condenser, which is of great importance to the overall performance of the steam turbine. The influences imposed by the strong flow interactions between the last stage turbine and the non-axisymmetric exhaust hood have not been taken into account properly in the current exhaust hood design approaches. The purpose of this paper is to optimize the diffuser in order to guarantee the aerodynamic performance of the turbine and the exhaust hood under the operational conditions. Considering the flow interactions between the turbine and the exhaust hood, the profiles of the diffuser end-wall were improved. The coupled turbine and exhaust hood calculations and the experiments were carried out to validate the effects of the optimization. It’s found that the redesigned diffuser can enhance the pressure recovery ability of the exhaust hood and increase the power output of the last stage turbine.


Author(s):  
Michal Hoznedl ◽  
Kamil Sedlák ◽  
Lukáš Mrózek ◽  
Tereza Dadáková ◽  
Zdeněk Kubín ◽  
...  

Abstract The paper deals with experimental research of the flow and dynamics of the blades in the last stage of a steam turbine with nominal output of 34 MW and a connected axial exhaust hood. The experiments were carried out on a turbine with relatively low inlet steam parameters “- 64 bars and 445 °C. It was possible to change the operating modes of the turbine during the course of measurement so that significant ventilation would be achieved in the last stage up to the point when aerodynamic throttling occurred in the last stage. In other words the turbine output varied from about 2 to 35 MW. The output of 2 MW was for the case of the island mode turbine operation. The experiments were carried out using static pressure taps and measurements of temperatures at the root and tip limiting wall. In addition to static pressure taps and temperature measurement, it was also possible to carry out probing by pneumatic probe with a diameter of 30 mm. Blade vibration monitoring sensors, so called last stage blade tip-timing, were also installed. The blade tip-timing acquisition hardware was used to monitor rotor blades tip amplitude. Due to the obtained experimental data, it was possible to verify the behaviour of the last stage and the connected exhaust hood for four measured variants. The courses of pressures and steam angles along the length of the LSB were determined. Furthermore, basic parameters of the last stage were determined, i.e. reactions of the stage, Mach and Reynolds numbers and values of pressure recovery coefficients. Based on experimental data the boundary conditions for CFD calculations were determined. Comparison of CFD calculations done for ventilation modes and for a nominal mode was also included. Another phenomenon which occurred during the probing of the flow parameters, particularly in ventilation modes, was the inability to determine parameters of steam due to low values of measured dynamic pressure in the vortex area at the root of the blade. The probe was able to detect dynamic pressure at the level of 50 Pa and more. In other words the transition point between backward and forward flows was identified. This limit point was used for further analysis of ventilation character of the steam flow depending on the ventilation coefficient c2x/u. where c2x is the average axial velocity at the LSB outlet, calculated from volumetric mass flow and u is LSB circumferential velocity calculated at LSB middle diameter. Due to the fact that it was also possible to measure vibration amplitudes of blades using the tip-timing method for a variety of modes, the relationships between pressure ratio over the tip and root of the last moving blade and vibration amplitude were also determined. This verified that the highest amplitude of blade tips occurred just when the compression of the medium on the blade tip was maximum, i.e. c2x/u = 0.05.


Author(s):  
Hiteshkumar Mistry ◽  
Manisekaran Santhanakrishnan ◽  
John Liu ◽  
Alexander Stein ◽  
Subhrajit Dey ◽  
...  

Modern steam turbines often utilize very long last stage buckets (LSB’s) in their low-pressure sections to improve efficiency. Some of these LSB’s can range in the order of 5 feet long. These long buckets (aka “blades”) are typically supported at their tip by a tip-shroud and near the mid span by a part span shroud or part span connector (PSC). The PSC is a structural element that connects all the rotor blades, generally at the mid span. It is primarily designed to address various structural issues, often with little attention to its aerodynamic effects. The objective of the current work is to quantify the impact of PSC on aerodynamic performance of the last stage of a LP steam turbine by using detailed CFD analyses. A commercial CFD solver, ANSYS CFX™, is used to solve the last stage domain by setting steam as the working fluid with linear variation of specific heat ratio with temperature. A tetrahedral grid with prismatic layers near the solid walls is generated using ANSYS WORKBENCH™. The results show a cylindrical PSC reduces the efficiency of the last stage by 0.32 pts, of which 0.20 pts is due to the fillet attaching the PSC to the blade. The results also show insignificant interaction of the PSC with the bucket tip aerodynamics. The work presents a detailed flow field analysis and shows the impact of PSC geometry on the aerodynamic performance of last stage of steam turbine. Present work is useful to turbine designer for trade-off studies of performance and reliability of LSB design with or without PSC.


Sign in / Sign up

Export Citation Format

Share Document