An Experimental Investigation of the Motion of Gas-Liquid Displacement Interface in an Artificial Porous Medium

Volume 4 ◽  
2004 ◽  
Author(s):  
Michael J. Oliver ◽  
Jaikrishnan R. Kadambi ◽  
Beverly Saylor ◽  
Martin Ferer ◽  
Grant S. Bromhal ◽  
...  

The study of flow and transport in porous media has relevance in many industrial, environmental (Geologic sequestration of CO2) and biological disciplines. In many engineering applications we require the knowledge of the velocity field for flow through porous objects. Historically, simplified models such as Darcy’s law [1,2], provide a reasonable description of the flow in the interior for single phase flow but require empirical coefficients to match the boundary conditions with the outer flow. The scientific basis for understanding flow and transport phenomena in porous media has largely been developed from experimental and theoretical studies in “bulk” or macroscopic systems in which coupled behavior at the pore scale is not measured or observed directly. To understand the flow behavior at the pore scale, flow characterization in porous media is very important. Multiphase, immiscible, low Re flow through a simulated porous media is studied experimentally. The experimental test cell, Figure 1, designed in collaboration with the Department of Energy, National Energy Technology Laboratory (DOE NETL), was manufactured from an optically clear polycarbonate material. It has a lattice type pattern of 2.5 mm pores bodies interconnected by angular capillary throats varying in size from 200 μm to 1000 μm. The experimental flow loop (Figure 2), utilizes air as the displacing fluid and sodium iodide (NaI) solution in water as the defending fluid. Air is provided at a constant pressure at the inlet. The refractive indices of the NaI solution and the optically clear test cell are matched to facilitate the observance of the air-liquid interface motion. Experimental data recorded with respect to time are the inlet gage pressure, delta pressure, inlet to outlet, across the test cell, volume flow rate at the outlet and the position of the displacement interface as the invading fluid, air, displaces the defending fluid, NaI solution. Parameters that can be varied in the experiment are viscosity ratio, micro and macro capillary number, the bond number and the volume flow rate. The details of the test loop are provided in Figure 2. The figure shows the piping arrangement to fill the test cell with the NaI solution and supplying the air for the tests. A CCD camera (Redlake ES 1.0 cross-correlation camera; resolution: 1008 × 1018 pixels) equipped with a 20 mm Micro Nikkor lens (Nikon) and a data acquisition system consisting of a PC and a PIXCI D2X frame grabber card (EPIX) is utilized to obtain a series of digital images as the invading air enters the test cell through the inlet manifold and makes way through the liquid until the breakthrough to the exit manifold. The pore scale velocity of the displacement interface is determined using a “Difference Threshold Technique” developed at Case Western Reserve University (CWRU), Laser Flow Diagnostics Lab (LFDL), Department of Mechanical and Aerospace Engineering. The difference threshold technique developed to processing the images is described in the next section.

2016 ◽  
Vol 32 (5) ◽  
pp. 603-611 ◽  
Author(s):  
D.-Q. Si ◽  
Y.-J. Jian ◽  
L. Chang ◽  
Q.-S. Liu

AbstractUsing the method of Laplace transform, an analytical solution of unsteady rotating electroosmotic flow (EOF) through a parallel plate microchannel is presented. The analysis is based upon the linearized Poisson-Boltzmann equation describing electrical potential distribution and the Navies Stokes equation representing flow field in the rotating coordinate system. The discrepancy of present problem from classical EOF is that the velocity fields are two-dimensional. The rotating EOF velocity profile and flow rate greatly depend on time t, rotating parameter ω and the electrokinetic width K (ratio of half height of microchannel to thickness of electric double layer). The influence of the above dimensionless parameters on transient EOF velocity, volume flow rate and EO spiral is investigated.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Cha'o-Kuang Chen ◽  
Hsin-Yi Lai ◽  
Wei-Fan Chen

The second-grade flows through a microtube with wall slip are solved by Laplace transform technique. The effects of rarefaction and elastic coefficient are considered with an unsteady flow through a microtube for a given but arbitrary inlet volume flow rate with time. Five cases of inlet volume flow rate are as follows: (1) trapezoidal piston motion, (2) constant acceleration, (3) impulsively started flow, (4) impulsively blocked fully developed flow, and (5) oscillatory flow. The results obtained are compared to those solutions under no-slip and slip condition.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Chun-I Chen ◽  
Cha’o-Kuang Chen ◽  
Heng-Ju Lin

This study examines the effects of rarefaction of an unsteady flow through a microtube for a given but arbitrary inlet volume flow rate. Four cases of inlet volume flow rate proposed by Das and Arakeri (2000, ASME J. Appl. Mech., 67, pp. 274–281) are as follows: (1) trapezoidal piston motion, (2) constant acceleration, (3) impulsively started flow, and (4) impulsively blocked fully developed flow. During the analysis process, the Knudsen number (Kn) is used to represent the degree of rarefaction. The analytical results are presented graphically and compared to the results for a continuum under a no-slip condition. The effect of wall-slip became significant with the increasing degrees of rarefaction. The velocity in the boundary layer increased, whereas the velocity in the potential core of the microtube decreased, under the same condition. The influence of the rarefaction for the pressure gradient varied for the four cases.


Author(s):  
Balasakthivel Kamaraj ◽  
Shankar C. Subramanian ◽  
Baskaran Rakkiappan

Diesel engines require atomized fuel injection inside the combustion chamber for better combustion and reduced emissions, which in turn requires a common rail fuel injection system with higher operating pressure capabilities. But, these requirements lead to increased fuel leakage through the working clearance in the pump to the engine lubrication oil chamber and increased lubrication oil leakage to the fuel side of the pump. The fuel leakage to lubrication oil (FtO) affects the lubrication property of the oil, which in turn affects the life of the lubricated components in the engine. The lubrication oil leakage to fuel (OtF) increases the injector nozzle coking and emission. The leakage flow through the clearance gap was generally studied for 1-dimensional cases by using the Couette–Poiseuille equation obtained from the continuity and the incompressible Navier–Stokes equation. The existing analytical approaches do not consider the fluid interactions/mixing in the 2-dimensional domain. The same is addressed in this study using the numerical simulation tool, Ansys CFX, to estimate the volume flow rate of OtF and FtO considering various design parameters such as diametrical clearance (4–6 μm), cylinder bore taper and piston speed. The leakage of fuel and lubrication oil take place between the working clearance of the piston and the cylinder bore. Pressure and drag effects are two important mechanisms that drive the leakage flow. The transient piston wall speed and the transient pressure at fuel side and lubrication oil side were used as the inputs to the simulation. The grid sensitivity analysis using different grid sizes was done to optimize the grid size. Higher computation time and memory for simulation work was reduced by optimizing the various simulation input parameters. The benchmark problem of Couette-Poiseuille flow was solved and the results were cross-checked with the analytical results. The actual two dimensional flow domain was modeled for the simulation of fluid flow with mixing. The mass and volume flow rate of lubrication oil and fuel were captured at the specified boundary with respect to time. The simulation was carried for various clearance values, clearance taper and speed ranges. The OtF and FtO were found to be increasing with respect to increase in clearance and speed. With this analysis, the sensitivity of the leakage flow rate of fuel and lubrication oil with respect to the important parameters was observed.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


2010 ◽  
Vol 7 (3) ◽  
pp. 169-176 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number) on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.


Author(s):  
Hyungki Shin ◽  
Junhyun Cho ◽  
Young-Jin Baik ◽  
Jongjae Cho ◽  
Chulwoo Roh ◽  
...  

Power generation cycle — typically Brayton cycle — to use CO2 at supercritical state as working fluid have been researched many years because this cycle increase thermal efficiency of cycle and decrease turbomachinery size. But small turbomachinery make it difficult to develop proto type Supercritical Carbon dioxide (S-CO2) cycle equipment of lab scale size. KIER (Korea Institute of Energy Research) have been researched S-CO2 cycle since 2013. This paper is about 60kWe scale and sub-kWe class turbo generator development for applying to this S-CO2 cycle at the lab scale. A design concept of this turbo-generator is to use commercially available components so as to reduce development time and increase reliability. Major problem of SCO2 turbine is small volume flow rate and huge axial force. High density S-CO2 was referred as advantage of S-CO2 cycle because it make small turbomachinery possible. But this advantage was not valid in lab-scale cycles under 100kW because small amount volume flow rate means high rotating speed and too small diameter of turbine to manufacture it. Also, high inlet and outlet pressure make huge axial force. To solve these problem, KIER have attempt various turbines. In this paper, these attempts and results are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document