A Technoeconomic Analysis of the Potential for Portable Pyrolysis in Northern New Mexico Forests

Author(s):  
Alexander L. Brown ◽  
Patrick D. Brady

Biomass pyrolysis systems can be designed to yield significant quantities of liquid. The liquids have approximately half the heating value of transportation fuels, depending strongly on the water content in the liquids. They are acidic, and tend to change with time, becoming more viscous and higher in molecular weight. However the process required to generate them is simple, and they hold promise to be a renewable source of liquid fuel if they can be produced in a way that is cost-effective. Northern New Mexico forests are mostly characterized by small diameter (less than or equal to 10 cm) conifer trees. For mitigation of fire risk, land owners are required to periodically thin their lands. This generates significant waste product with little or no commercial value. The most widely used current practice is to accumulate and burn the cut wood, or to leave it to rot. Seeking a more effective and ecologically friendly use of the waste, a scaled experimental pyrolysis system was developed using design principles focused on the portable model. The data from this test unit and historical data are used to evaluate the break-even costs of performing pyrolysis. The char co-product is found to have a slight beneficial effect on the economics of the analysis. Labor is a significant fraction of the cost. Economies of scale are important, so the largest system that can be transported will make the most economic sense. On a price per unit energy, this model may be competitive with liquid transportation fuels and fuel oil. However pyrolysis oils will have difficulty competing with natural gas at current regional prices. Other regions may show a more positive comparison, especially in parts of the world where labor is much less expensive.

RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26732-26738
Author(s):  
Victor Garcia-Montoto ◽  
Sylvain Verdier ◽  
David C. Dayton ◽  
Ofei Mante ◽  
Carine Arnaudguilhem ◽  
...  

Renewable feedstocks, such as lignocelulosic fast pyrolysis oils and both vegetable oil and animal fats, are becoming a viable alternative to petroleum for producing high-quality renewable transportation fuels.


2021 ◽  
Vol 35 (3) ◽  
pp. 2347-2356
Author(s):  
Zsolt Dobó ◽  
Gergő Kecsmár ◽  
Gábor Nagy ◽  
Tamás Koós ◽  
Gábor Muránszky ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
pp. 86-94
Author(s):  
Diogo Rechena ◽  
Luís Sousa ◽  
Virgínia Infante ◽  
Elsa Henriques

Abstract With increasing market needs for product and service variety, companies struggle to provide diversity in cost-effective ways. Through standardization of components with a low perceived added value, companies can take advantage of economies of scale while maintaining product diversity. Railway infrastructure managers face similar challenges of providing economically sustainable services while dealing with the costs of maintaining the system diversity. Typically, unintended design diversity stems from design practices in which existing solutions are not reused for new problems and new solutions are rarely planned considering the dynamics of requirement changes. In this paper we provide a methodology to assess how to standardize different designs to minimize design diversity and to assess design divergence in a product family. The developed methodology is able to take into account any set of standardization compatibility constraints that the user can define. The methodology was applied in the context of a small-scale railway infrastructure manager using a dataset of 223 unique designs of functionally similar components from its electrification system. Depending on the activated compatibility constraints, results indicate that over 60% of components can be reduced to a set of 86 unique designs.


Author(s):  
Wesley McCall ◽  
Thomas M. Christy ◽  
James J. Butler

Direct push (DP) methods provide a cost-effective alternative to conventional rotary drilling for investigations in unconsolidated formations. DP methods are commonly used for sampling soil gas, soil and groundwater; installing small-diameter monitoring wells; electrical logging; cone penetration testing; and standard penetration tests. Most recently, DP methods and equipment for vertical profiling of formation hydraulic conductivity (K) have been developed. Knowledge of the vertical and lateral variations in K is integral to understanding contaminant migration and, therefore, essential to designing an adequate and effective remediation system. DP-installed groundwater sampling tools may be used to access discrete intervals of the formation to conduct pneumatic slug tests. A small-diameter (38mm OD) single tube protected screen device allows the investigator to access one depth interval per advancement. Alternatively, a larger diameter (54mm OD) dual-tube groundwater profiling system may be used to access the formation at multiple depths during a single advancement. Once the appropriate tool is installed and developed, a pneumatic manifold is installed on the top of the DP rod string. The manifold includes the valving, regulator, and pressure gauge needed for pneumatic slug testing. A small-diameter pressure transducer is inserted via an airtight fitting in the pneumatic manifold, and a data-acquisition device connected to a laptop computer enables the slug test data to be acquired, displayed, and saved for analysis. Conventional data analysis methods can then be used to calculate the K value from the test data. A simple correction for tube diameter has been developed for slug tests in highly permeable aquifers. The pneumatic slug testing technique combined with DP-installed tools provides a cost-effective method for vertical profiling of K. Field comparison of this method to slug tests in conventional monitoring wells verified that this approach provides accurate K values. Use of this new approach can provide data on three-dimensional variations in hydraulic conductivity at a level of detail that has not previously been available. This will improve understanding of contaminant migration and the efficiency and quality of remedial system design, and ultimately, should lead to significant cost reductions.


Author(s):  
Shu KONDO ◽  
Daiki YAMAMOTO ◽  
Kamal Prasad Prasad Sharma ◽  
Yazid Yaakob ◽  
Takahiro SAIDA ◽  
...  

Abstract We performed single-walled carbon nanotube (SWCNT) growth on flexible stainless-steel foils by applying alcohol catalytic chemical vapor deposition using an Ir catalyst with an alumina buffer layer. When the alumina thickness was 90 nm, vertically aligned SWCNTs with a thickness of 4.6 m were grown. In addition, Raman results showed that the diameters of most SWCNTs were distributed below 1.1 nm. Compared with conventional chemical vapor deposition growth where Si wafers are used as substrates, this method is more cost effective and easier to extend for mass production of small-diameter SWCNTs.


1996 ◽  
Vol 3 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Gary Meyer ◽  
James W. Dearing

Social marketing strategies are deployed in social change campaigns around the world. Yet the usefulness of social marketing strategies to affect behavior change among unique population members is not well known. Social marketing is efficient and cost-effective when a campaign targets a sufficiently large audience so as to achieve economies of scale. Unique population groups, however, typically consist of few members. How can efficiency be achieved with small target audiences? To solve this conundrum we suggest that certain social marketing strategies (environmental mapping, formative evaluation, interpersonal communication channels, and the nonmonetary costs of adoption) should be emphasized, and others (program management and target audience segmentation) deemphasized, in program design. We use examples drawn from a recent study of HIV prevention programs in San Francisco to illustrate this point.


Author(s):  
Manuel Garcia-Peréz ◽  
Jesus Alberto Garcia-Nunez ◽  
Manuel Raul Pelaez-Samaniego ◽  
Chad Eugene Kruger ◽  
Mark Raymond Fuchs ◽  
...  

The objective of this chapter is to review and discuss sustainability and techno-economic criteria to integrate pyrolysis, biochar activation, and bio-oil refining into sustainable business models. Several business models such as the production of biochar with heat recovery and bio-oil refining are discussed. Cost data needed by engineering practitioners to conduct enterprise-level financial analyses of different biomass pyrolysis economy models are presented. This chapter also reviews life cycle assessments of pyrolysis business models. If the feedstock used is produced sustainably and if the pyrolysis vapors are used for bio-oil or heat production, both, the production of biochar through slow pyrolysis and its use as a soil amendment to sequester carbon, and the production and refining of fast pyrolysis oils to produce transportation fuels could have a positive environmental impact.


Author(s):  
Oliver Faust ◽  
Ningrong Lei ◽  
Eng Chew ◽  
Edward J. Ciaccio ◽  
U Rajendra Acharya

Aim: In this study we have investigated the problem of cost effective wireless heart health monitoring from a service design perspective. Subject and Methods: There is a great medical and economic need to support the diagnosis of a wide range of debilitating and indeed fatal non-communicable diseases, like Cardiovascular Disease (CVD), Atrial Fibrillation (AF), diabetes, and sleep disorders. To address this need, we put forward the idea that the combination of Heart Rate (HR) measurements, Internet of Things (IoT), and advanced Artificial Intelligence (AI), forms a Heart Health Monitoring Service Platform (HHMSP). This service platform can be used for multi-disease monitoring, where a distinct service meets the needs of patients having a specific disease. The service functionality is realized by combining common and distinct modules. This forms the technological basis which facilitates a hybrid diagnosis process where machines and practitioners work cooperatively to improve outcomes for patients. Results: Human checks and balances on independent machine decisions maintain safety and reliability of the diagnosis. Cost efficiency comes from efficient signal processing and replacing manual analysis with AI based machine classification. To show the practicality of the proposed service platform, we have implemented an AF monitoring service. Conclusion: Having common modules allows us to harvest the economies of scale. That is an advantage, because the fixed cost for the infrastructure is shared among a large group of customers. Distinct modules define which AI models are used and how the communication with practitioners, caregivers and patients is handled. That makes the proposed HHMSP agile enough to address safety, reliability and functionality needs from healthcare providers.


2018 ◽  
Vol 04 (04) ◽  
pp. 1850015
Author(s):  
Michael O'Donnell ◽  
Robert P. Berrens

Municipal water demand has declined over the past several decades in many large cities in the western United States. The same is true in Clovis, New Mexico, which is a small town in arid eastern New Mexico, whose sole water source is from the dwindling southern Ogallala Aquifer. Using premises-level monthly panel data from 2006 to 2015 combined with climate data and additional controls, we apply a fixed effects instrumental variable approach to estimate municipal water demand. Results indicate that utility-controlled actions such as price increases and rebates for xeriscaping and water saving technology have contributed to the decline. Overall water demand was found to be price inelastic and in the neighborhood of [Formula: see text]0.50; however, premises receiving toilet and washing machine rebates were relatively more price inelastic and premises receiving landscaping rebates were more price elastic, though still inelastic. In addition, the average premises receiving its first toilet rebate reduced water use by 8.4%, washing machine rebates lowered use by 9.2%, and the average landscaping rebate reduced water use by less than 5.0%. From the utility’s perspective, and assuming a 5.0% discount rate, levelized cost analysis indicates that toilet rebates are 34% more cost effective than washing machine rebates and nearly 800% more cost effective than landscaping rebates over their respective lives per volume of water conserved. While this research focuses on Clovis, estimation results can be leveraged by other small to mid-sized cities experiencing declining supplies, confronting climate change, and with little opportunity for near-term supply enhancement.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chiara Pennesi ◽  
Alessia Amato ◽  
Stefano Occhialini ◽  
Alan T. Critchley ◽  
Cecilia Totti ◽  
...  

AbstractThe biosorption capacities of dried meal and a waste product from the processing for biostimulant extract of Ascophyllum nodosum were evaluated as candidates for low-cost, effective biomaterials for the recovery of indium(III). The use of indium has significantly grown in the last decade, because of its utilization in hi-tech. Two formats were evaluated as biosorbents: waste-biomass, a residue derived from the alkaline extraction of a commercial, biostimulant product, and natural-biomass which was harvested, dried and milled as a commercial, “kelp meal” product. Two systems have been evaluated: ideal system with indium only, and double metal-system with indium and iron, where two different levels of iron were investigated. For both systems, the indium biosorption by the brown algal biomass was found to be pH-dependent, with an optimum at pH3. In the ideal system, indium adsorption was higher (maximum adsorptions of 48 mg/g for the processed, waste biomass and 63 mg/g for the natural biomass), than in the double metal-system where the maximum adsorption was with iron at 0.07 g/L. Good values of indium adsorption were demonstrated in both the ideal and double systems: there was competition between the iron and indium ions for the binding sites available in the A. nodosum-derived materials. Data suggested that the processed, waste biomass of the algae, could be a good biosorbent for its indium absorption properties. This had the double advantages of both recovery of indium (high economic importance), and also definition of a virtuous circular economic innovative strategy, whereby a waste becomes a valuable resource.


Sign in / Sign up

Export Citation Format

Share Document