Analysis of Compression-Ignition Engine Design Concerning Engine Structural Loading Capacity

Author(s):  
Gong Chen

Present-day high-power compression-ignition engines are required in design not only to achieve a targeted high fuel efficiency, but also to meet regulated exhaust emissions standards. This paper investigates the effects of the in-cylinder combustion related design parameters, including cylinder compression ratio, fuel injection-start timing, and the amount of cylinder air charge, on engine performances and emissions as the engine structure-loading allowance is specified. Thereby the determination of those parameters to optimize the engine overall performances without exceeding the allowances in engine mechanical and thermal loading can be achieved. An enhanced understanding of those design parameters associated with the engine structural loading parameters, such as the cylinder peak firing pressure and exhaust temperature, is studied. The analytical prediction of the trade-off between those parameters with peak firing pressure contained is modeled and developed.

2021 ◽  
Author(s):  
Srinivasa Krishna Addepalli ◽  
Michael Pamminger ◽  
Riccardo Scarcelli ◽  
Thomas Wallner

Abstract Gasoline compression ignition (GCI) is a promising way to achieve high thermal efficiency and low emissions while leveraging conventional diesel engine hardware. GCI is a partially premixed combustion concept, which derives its superiority from good volatility and long ignition delay of gasoline-like fuels. The present study investigates the interaction between the piston bowl and the spray plume of a compression ignition engine that operates with a late fuel injection strategy using computational fluid dynamics (CFD) analysis. Simulations were carried out on a single cylinder of a multi-cylinder heavy-duty compression ignition engine. The engine operates at a speed of 1038 rev/min., and a compression ratio of 17. Incylinder turbulence was modelled using RNG k-ε model and the fuel spray break up was modelled using KH-RT model. A reduced chemical kinetic mechanism was used to model combustion chemistry. After validating the combustion and performance characteristics of the baseline piston against experimental results, several new piston bowl designs were generated using CAESES. Full cycle engine simulations for four selected bowl profiles were carried out. The results compare the spray-bowl interaction of the new piston bowl designs with the baseline design. It was found that the lip location and center depth of the bowl profile are the critical design parameters that influence the air utilization and heat transfer losses. The impact of spray-bowl interaction on thermal efficiency of the engine is investigated.


2021 ◽  
Vol 13 (15) ◽  
pp. 8593
Author(s):  
Yew Heng Teoh ◽  
Hishammudin Afifi Huspi ◽  
Heoy Geok How ◽  
Farooq Sher ◽  
Zia Ud Din ◽  
...  

Homogeneous charge compression ignition (HCCI) is considered an advanced combustion method for internal combustion engines that offers simultaneous reductions in oxides of nitrogen (NOx) emissions and increased fuel efficiency. The present study examines the influence of intake air temperature (IAT) and premixed diesel fuel on fuel self-ignition characteristics in a light-duty compression ignition engine. Partial HCCI was achieved by port injection of the diesel fuel through air-assisted injection while sustaining direct diesel fuel injection into the cylinder for initiating combustion. The self-ignition of diesel fuel under such a set-up was studied with variations in premixed ratios (0–0.60) and inlet temperatures (40–100 °C) under a constant 1600 rpm engine speed with 20 Nm load. Variations in performance, emissions and combustion characteristics with premixed fuel and inlet air heating were analysed in comparison with those recorded without. Heat release rate profiles determined from recorded in-cylinder pressure depicted evident multiple-stage ignitions (up to three-stage ignition in several cases) in this study. Compared with the premixed ratio, the inlet air temperature had a greater effect on low-temperature reaction and HCCI combustion timing. Nonetheless, an increase in the premixed ratio was found to be influential in reducing nitric oxides emissions.


2021 ◽  
pp. 1-29
Author(s):  
Ratnak Sok ◽  
Kei Yoshimura ◽  
Kenjiro Nakama ◽  
Jin Kusaka

Abstract The oxygen-depleted environment in the recompression stroke can convert gasoline fuel into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reactions. These reformate species can influence the combustion characteristics of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, the combustion phenomena are investigated using a single-cylinder research engine under a medium load. The main combustion phases are experimentally advanced by direct fuel injection into the negative valve overlap (NVO) compared with that of intake stroke under single/double pulse injections. NVO peak in-cylinder pressures are lower than that of motoring due to the limited O2 concentration, emphasizing that endothermic reactions occur during the overlap. This phenomenon limits the oxidation reactions, and the thermal effect is not pronounced. The 0-D chemical kinetics results present the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. Predicted ignition delays are shortened due to the additions of these reformed species. The influences of the reformates on the main combustion are confirmed by 3-D CFD calculations, and the results show that OH radicals are advanced under NVO injections relative to intake stroke injections. Consequently, earlier heat release and cylinder pressure are noticeable. Parametric studies on the effects of injection pressure, double-pulse injection, and equivalence ratio on the combustion and emissions are also discussed experimentally.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
I. M. Yusri ◽  
M. K. Akasyah ◽  
R. Mamat ◽  
O. M. Ali

The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number as compared to other alternatives fuel. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using multi-cylinder, 4-stroke engine with common rail direct injection system to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar. Based on the results Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.


1932 ◽  
Vol 36 (261) ◽  
pp. 733-787 ◽  
Author(s):  
C. B. Dicksee

In this paper the author does not propose to deal with any particular form or type of engine or fuel-injection system, but to discuss some of the problems which are encountered when engaged on the development of a high-speed compression-ignition engine.The main problems to be solved consist in devising suitable means for utilising to the fullest possible extent the oxygen available within the cylinder and for avoiding the production of smoke and noise and, in so far as it is connected with combustion conditions, smell.


Author(s):  
Swami Nathan Subramanian ◽  
Stephen Ciatti

The conventional combustion processes of Spark Ignition (SI) and Compression Ignition (CI) have their respective merits and demerits. Internal combustion engines use certain fuels to utilize those conventional combustion technologies. High octane fuels are required to operate the engine in SI mode, while high cetane fuels are preferable for CI mode of operation. Those conventional combustion techniques struggle to meet the current emissions norms while retaining high efficiency. In particular, oxides of nitrogen (NOx) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines, and conventional gasoline operated SI engines are not fuel efficient. Advanced combustion concepts have shown the potential to combine fuel efficiency and improved emissions performance. Low Temperature Combustion (LTC) offers reduced NOx and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NOx emissions is dependent on achieving optimal combustion phasing. Variations in injection pressures, injection schemes and Exhaust Gas Recirculation (EGR) are studied with low octane gasoline LTC. Reductions in emissions are a function of combustion phasing and local equivalence ratio. Engine speed, load, EGR quantity, compression ratio and fuel octane number are all factors that influence combustion phasing. Low cetane fuels have shown comparable diesel efficiencies with low NOx emissions at reasonably high power densities.


Sign in / Sign up

Export Citation Format

Share Document