Particulate Matter Emission Characterization From a Natural Gas Fuelled High Pressure Direct Injection Engine
High-Pressure Direct-Injection (HPDI) combustion of Natural Gas can reduce the gaseous and Particulate Matter (PM) emissions compared to a conventional diesel engine. Upcoming EPA and EURO emission limits may restrict particle number as well as particle mass. In preparation for these upcoming limits, the PM mass, size and composition was studied from a heavy-duty Cummins ISX engine converted to HPDI operation. To characterize the PM emissions, tests were based around a mid-speed, high-load operating point. Injection timing, equivalence ratio, gas supply pressure, EGR % and diesel injection mass were isolated and varied. PM emissions were characterized by the mobility size distribution, light scattering and filter loading. In addition a novel thermodenuder was used to determine the PM volatile fraction. It was found that EQR and EGR have the greatest effect on PM mass emissions and the correlations between these parameters are evaluated. The mean particles size and number concentrations are again most effected by EGR and EQR with smaller effects from the GRP and diesel pilot. The size distributions of the parameter variations are similar and there are no nucleation mode ultrafine particles observed. The volatile fraction is fairly constant across the parameter variations and is found to be around 18% of the mass and 11% by number of particles at this high load condition.