Particulate Matter Emission Characterization From a Natural Gas Fuelled High Pressure Direct Injection Engine

Author(s):  
Bronson Patychuk ◽  
Steven N. Rogak

High-Pressure Direct-Injection (HPDI) combustion of Natural Gas can reduce the gaseous and Particulate Matter (PM) emissions compared to a conventional diesel engine. Upcoming EPA and EURO emission limits may restrict particle number as well as particle mass. In preparation for these upcoming limits, the PM mass, size and composition was studied from a heavy-duty Cummins ISX engine converted to HPDI operation. To characterize the PM emissions, tests were based around a mid-speed, high-load operating point. Injection timing, equivalence ratio, gas supply pressure, EGR % and diesel injection mass were isolated and varied. PM emissions were characterized by the mobility size distribution, light scattering and filter loading. In addition a novel thermodenuder was used to determine the PM volatile fraction. It was found that EQR and EGR have the greatest effect on PM mass emissions and the correlations between these parameters are evaluated. The mean particles size and number concentrations are again most effected by EGR and EQR with smaller effects from the GRP and diesel pilot. The size distributions of the parameter variations are similar and there are no nucleation mode ultrafine particles observed. The volatile fraction is fairly constant across the parameter variations and is found to be around 18% of the mass and 11% by number of particles at this high load condition.

Author(s):  
Won Geun Lee ◽  
David Montgomery

High Pressure Direct-Injection (HPDI) is a technology option for engines used in mobile equipment applications where use of LNG as a fuel is desired. Using the combination of a diesel pilot injection and direct gas injection, HPDI has the potential to deliver low emissions, excellent transient performance, high efficiency, and high gas substitution. When the HPDI program was initially undertaken, in order to aid in initial hardware design, 3-dimensional computational fluid dynamic modeling was conducted to understand the mixing and reaction processes in the combustion chamber of an HPDI engine. Gaining insight into qualitative trends of operation parameters and hardware configurations was a first critical step toward delivering a hardware set to demonstrate HPDI natural gas combustion system capabilities. To model the combustion of multi-component fuel at arbitrary constituent ratios, a combustion model based on a detailed chemical kinetics approach was employed. Several published mechanisms and combinations of established mechanisms were tested by comparing results with existing fumigated dual fuel engine results. The result shows that some of combined mechanisms for n-heptane combustion and methane combustion are capable of adequately predicting combustion behavior in diesel-natural gas dual fuel combustion systems. One of the reduced n-heptane mechanisms (by Patel et al.) also matched dual fuel combustion results reasonably well. This preliminary simulation study was conducted with typical trapped air conditions and fuel quantities matching the energy delivery for a 100 % load condition in existing DI diesel engines. A full 360-degree mesh at intake valve closing was constructed and a detailed geometry of the gas injector nozzle and sac area was modeled in locally refined grids using a Caterpillar proprietary CFD code that accepts industry standard mechanisms. The diesel pilot injection followed by gas injection and resulting combustion inside an HPDI engine was simulated from IVC through the compression and combustion strokes. The operating parameters — such as diesel pilot injection timing, pilot injection amount, and start of gas injection — were varied, and the effect on IMEP, NOx, CO and cylinder pressure were investigated. It was shown that the start of gas injection is the strongest parameter for control of combustion. Subsequent to the work discussed in this paper, the hardware configuration established as optimal during the modeling work was carried forward to the physical engine testing and was successful in delivering the performance and emissions goals without modification, demonstrating the accuracy and value of modern combustion modeling.


2020 ◽  
Vol 6 ◽  
Author(s):  
Shouvik Dev ◽  
Hongsheng Guo ◽  
Brian Liko

Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions.


Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 117173 ◽  
Author(s):  
Jeongwoo Lee ◽  
Cheolwoong Park ◽  
Jongwon Bae ◽  
Yongrae Kim ◽  
Sunyoup Lee ◽  
...  

2021 ◽  
pp. 146808742110012
Author(s):  
Nicola Giramondi ◽  
Anders Jäger ◽  
Daniel Norling ◽  
Anders Christiansen Erlandsson

Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2571 ◽  
Author(s):  
Jingrui Li ◽  
Jietuo Wang ◽  
Teng Liu ◽  
Jingjin Dong ◽  
Bo Liu ◽  
...  

High-pressure direct-injection (HPDI) natural gas marine engines are widely used because of their higher thermal efficiency and lower emissions. The effects of different injection rate shapes on the combustion and emission characteristics were studied to explore the appropriate gas injection rate shapes for a low-speed HPDI natural gas marine engine. A single-cylinder model was established and the CFD model was validated against experimental data from the literature; then, the combustion and emission characteristics of five different injection rate shapes were analyzed. The results showed that the peak values of in-cylinder pressure and heat release rate profiles of the triangle shape were highest due to the highest maximum injection rate, which occurred in a phase close to the top dead center. The shorter combustion duration of the triangle shape led to higher indicated mean effective pressure (IMEP) and NOx emissions compared with other shapes. The higher initial injection rates of the rectangle and slope shapes had a negative effect on the ignition delay periods of pilot fuel, which resulted in lower in-cylinder temperature and NOx emissions. However, due to the lower in-cylinder temperature, the engine power output was also lower. Otherwise, soot, unburned hydrocarbon (UHC), and CO emissions and indicated specific fuel consumption (ISFC) increased for both rectangle and slope shapes. The trapezoid and wedge shapes achieved a good balance between fuel consumption and emissions.


2020 ◽  
Vol 34 (11) ◽  
pp. 14796-14813
Author(s):  
Jingrui Li ◽  
Xinlei Liu ◽  
Haifeng Liu ◽  
Ying Ye ◽  
Hu Wang ◽  
...  

Author(s):  
Greg Beshouri ◽  
Gerry Fischer

Abstract In the late 1980’s Enterprise Engine Company performed a single cylinder test of micro-pilot high pressure direct injection as a retrofit technology for conventional dual fuel engines. While that testing demonstrated a number of benefits for this technology, non-technical considerations led to the use of low pressure Pre-Combustion Chamber (PCC) micro-pilot technology as the retrofit technology instead. Thirty years later, when the automotive components of the PCC micro-pilot system were no longer available, the opportunity again arose to test the capabilities of an off the shelf high pressure direct injection micro-pilot system as a retrofit technology for a conventional dual fuel engine. Single cylinder and full engine testing of the high pressure direct injection micro-pilot injection confirmed the results of the 1980’s testing. The test results also corroborated modern analytical and experimental testing of high pressure pilot technology. In particular, the interaction between the diesel pilot and primary fuel gas charge is very complex and sometimes counterintuitive. Likewise performance optimization requires careful balance of injection timing, injection quantity and fuel gas air/fuel ratio. Even then, exhaust gas methane emissions remain counterintuitive. This paper reviews modern single cylinder and full engine test results focusing on optimization parameters for high pressure direct injection micro-pilot for retrofit and new engine applications.


Sign in / Sign up

Export Citation Format

Share Document