Micromixer: Alternative Passive Solution With Injection Amplificator System

Author(s):  
Brahim Dennai ◽  
Rachid Khelfaoui ◽  
A. hak Bentaleb ◽  
A. hak Maazouzi

Mixing rate is characterized by the diffusion flux given by the Fick’s law. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet flow. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The microsystem modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed [2,7]. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 92% within a typical mixing chamber of 2.25 mm diameter and 0.20 mm length when the Reynolds number is Re = 490. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in micro system.

2014 ◽  
Vol 1064 ◽  
pp. 213-218
Author(s):  
Brahim Dennai ◽  
Abdelhak Bentaleb ◽  
Tawfiq Chekifi ◽  
Rachid Khelfaoui ◽  
Asma Abdenbi

The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed [2,7]. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem.


Author(s):  
Shakhawat Hossain ◽  
Mubashshir Ahmad Ansari ◽  
Afzal Husain ◽  
Kwang-Yong Kim

In this study, a parametric investigation on mixing of two fluids in a modified Tesla microchannel, has been preformed. Modified Tesla micromixer applies both flow separation and vortices string principles to enhance the mixing. The fluid stream splits into two sub-streams and one of them mixes with the other again at the exit of the Tesla unit. Analyses of mixing and flow field have been carried out for a wide range of Reynolds number from 0.05 to 40. Mixing performance and pressure drop characteristics with two geometrical parameters, i.e, ratio of the diffuser gap to channel width (h/w) and ratio of the curved gap to the channel width (s/w), have been analyzed at six different Reynolds numbers. The vortical structure of the flow has been analyzed to explain mixing performance. The sensitivity analysis reveals that mixing is more sensitive s/w, than the h/w.


Author(s):  
Dong Jin Kang

A new design scheme is proposed for twisting the walls of a microchannel, and its performance is demonstrated numerically. The numerical study was carried out for a T-shaped microchannel with twist angles in the range of 0 to 34π. The Reynolds number range was 0.15 to 6. The T-shaped microchannel consists of two inlet branches and an outlet branch. The mixing performance was analyzed in terms of the degree of mixing and relative mixing cost. All numerical results show that the twisting scheme is an effective way to enhance the mixing in a T-shaped microchannel. The mixing enhancement is realized by the swirling of two fluids in the cross section and is more prominent as the Reynolds number decreases. The twist angle was optimized to maximize the DOM, which increases with the length of the outlet branch. The twist angle was also optimized in terms of the relative mixing. The two optimum twisting angles are generally not coincident. The optimum twist angle shows a dependence on the length of the outlet branch but it is not affected much by the Reynolds number.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26 ◽  
Author(s):  
Dong Jin Kang

A new design scheme is proposed for twisting the walls of a microchannel, and its performance is demonstrated numerically. The numerical study was carried out for a T-shaped microchannel with twist angles in the range of 0 to 34π. The Reynolds number range was 0.15 to 6. The T-shaped microchannel consists of two inlet branches and an outlet branch. The mixing performance was analyzed in terms of the degree of mixing and relative mixing cost. All numerical results show that the twisting scheme is an effective way to enhance the mixing in a T-shaped microchannel. The mixing enhancement is realized by the swirling of two fluids in the cross section and is more prominent as the Reynolds number decreases. The twist angle was optimized to maximize the degree of mixing (DOM), which increases with the length of the outlet branch. The twist angle was also optimized in terms of the relative mixing cost (MC). The two optimum twisting angles are generally not coincident. The optimum twist angle shows a dependence on the length of the outlet branch but it is not affected much by the Reynolds number.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 685
Author(s):  
Makhsuda Juraeva ◽  
Dong Jin Kang

A new cross-channel split-and-recombine (CC-SAR) micro-mixer was proposed, and its performance was demonstrated numerically. A numerical study was carried out over a wide range of volume flow rates from 3.1 μL/min to 826.8 μL/min. The corresponding Reynolds number ranges from 0.3 to 80. The present micro-mixer consists of four mixing units. Each mixing unit is constructed by combining one split-and-recombine (SAR) unit with a mixing cell. The mixing performance was analyzed in terms of the degree of mixing and relative mixing cost. All numerical results show that the present micro-mixer performs better than other micro-mixers based on SARs over a wide range of volume flow rate. The mixing enhancement is realized by a particular motion of vortex flow: the Dean vortex in the circular sub-channel and another vortex inside the mixing cell. The two vortex flows are generated on the different planes perpendicular to each other. They cause the two fluids to change their relative position as the fluids flow into the circular sub-channel of the SAR, eventually promoting violent mixing. High vorticity in the mixing cell elongates the flow interface between two fluids, and promotes mixing in the flow regime of molecular diffusion dominance.


2012 ◽  
Vol 516-517 ◽  
pp. 854-857
Author(s):  
Shu Xia Qiu ◽  
Ning Pang

Inspired by the increasing interests on mixing effectiveness of opposed impinging jets, a numerical work is carried out to study the flow characteristics. The fluid temperature is used as a passive tracer to evaluate the mixing rate in the current mathematical models. The effect of Reynolds number on the mixing performance is discussed. Furthermore, in order to enhance the mixing efficiency and reduce the energy cost, unsteady flow pulsations are induced at the jet inlets. The numerical results indicate that the mixing efficiency can be improved by the unsteady flow pulsations via adjusting the hydrodynamics characteristics in the opposed jets.


2015 ◽  
Vol 19 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Amir Mardani ◽  
Sadegh Tabejamaat

In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD) combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.


Author(s):  
Michael CH Yam ◽  
Ke Ke ◽  
Ping Zhang ◽  
Qingyang Zhao

A novel beam-to-column connection equipped with shape memory alloy (SMA) plates has been proposed to realize resilient performance under low-to-medium seismic actions. In this conference paper, the detailed 3D numerical technique calibrated by the previous paper is adopted to examine the hysteretic behavior of the novel connection. A parametric study covering a reasonable range of parameters including the thickness of the SMA plate, friction coefficient between SMA plate and beam flange and pre-load of the bolt was carried out and the influence of the parameters was characterized. In addition, the effect of the SMA Belleville washer on the connection performance was also studied. The results of the numerical study showed that the initial connection stiffness and the energy-dissipation capacity of the novel connection can be enhanced with the increase of the thickness of the SMA plate. In addition, the initial connection stiffness and energy-dissipation behavior of the novel connection can be improved by increasing the friction coefficient or pre-load of bolts, whereas the increased friction level could compromise the self-centering behavior of the connection. The hysteretic curves of the numerical models of the connection also implied that the SMA washers may contribute to optimizing the connection behavior by increasing the connection stiffness and energy-dissipation capacity without sacrificing the self-centering behavior.


Author(s):  
Muhammad Irfan ◽  
Imran Shah ◽  
Usama M Niazi ◽  
Muhsin Ali ◽  
Sadaqat Ali ◽  
...  

Fluid mixing in lab-on-a-chip devices at laminar flow conditions result in a low mixing index. The reason is dominant diffusion over the convection process. The mixing index can be improved by certain changes in the micromixer structural design like introducing obstacles in the path of fluid flow. These obstacles will make dominant the advection process over the diffusion process. The main contribution of this work is based on proposing the novel hybrid type micromixer design for enhancing the mixing quality. Three non-aligned M-type and non-aligned M-type with obstacles passive type micromixers are analyzed by COMSOL5.5. These designs are hybrid types because different structural changes are combined in a single design for mixing improvement. First of all the straight non-aligned inlets, M-type passive micromixer (SMTM) is analyzed. It is observed that mixing performance is improved because of M-shaped mixing units and non-aligned inlets. This improvement is deemed to be not enough so different shaped obstacles are introduced in the micromixer design. These designs based on obstacles are named horizontal rectangular M-type micromixer, square M-type micromixer, and vertical rectangular M-type micromixer. The mixing index for SMTM, square M-type micromixer, horizontal rectangular M-type micromixer, and vertical rectangular M-type micromixer at Reynolds number Re = 60 is respectively given by 71.1%, 83.21%, 84.45%, and 89.99%. The mixing index of vertical rectangular M-type micromixer was 59.34% − 87.65% for Re = 0.5–100. Vertical rectangular M-type micromixer is concluded with the better-mixing capability design among the proposed ones. Based on these simulation results, the vertical rectangular M-type micromixer design can be utilized for mixing purposes in biomedical applications like nanoparticle synthesis and biomedical sample preparation for drug delivery.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1470
Author(s):  
Omid Rouhi ◽  
Sajad Razavi Bazaz ◽  
Hamid Niazmand ◽  
Fateme Mirakhorli ◽  
Sima Mas-hafi ◽  
...  

Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer. Here, mixing performance in a spiral micromixer with different channel cross-sections is evaluated experimentally and numerically in the Re range of 0.001 to 50. The accuracy of the 3D-finite element model was first verified at different flow rates by tracking the mixing index across the loops, which were directly proportional to the spiral radius and were hence also proportional to the Dean flow. It is shown that higher flow rates induce stronger vortices compared to lower flow rates; thus, fewer loops are required for efficient mixing. The numerical study revealed that a large-angle outward trapezoidal cross-section provides the highest mixing performance, reaching efficiencies of up to 95%. Moreover, the velocity/vorticity along the channel length was analyzed and discussed to evaluate channel mixing performance. A relatively low pressure drop (<130 kPa) makes these passive spiral micromixers ideal candidates for various lab-on-chip applications.


Sign in / Sign up

Export Citation Format

Share Document