Performance Test Results of the Supercritical CO2 Compressor for a New Gas Turbine Generating System

Author(s):  
Masanori Aritomi ◽  
Takao Ishizuka ◽  
Yasushi Muto ◽  
Nobuyoshi Tsuzuki

Supercritical carbon dioxide (S-CO2) gas turbines can generate power at high cycle thermal efficiency, even at modest temperatures of 500–550°C, because of their markedly reduced compressor work near the critical point. Furthermore, the reaction between Na and CO2 is milder than that between H2O and Na. A more reliable and economically advantageous power generation system could be achieved by coupling with a sodium-cooled fast reactor. At Tokyo Institute of Technology, numerous development projects have been conducted for development of this system in cooperation with JAEA. Supercritical CO2 compressor performance test results are given as described herein. A centrifugal compressor is chosen for the performance test. Main compressor parts are stored in a pressure vessel. Maximum design conditions of the supercritical CO2 test apparatus are pressure of 11 MPa, temperature of 150°C, the flow rate of 6 kg/s and rotational speed of 24,000 rpm. The centrifugal compressor has an electric motor with permanent magnets on the rotor surface, with speed control by an inverter up to 24,000 rpm, a rotor shaft for the impeller, and a motor supported by gas bearings. Different compressor design points are examined using impellers of three kinds; test data are obtained using those impellers under steady state conditions with changing pressure, temperature, flow rate, and compressor rotor speed. The pressure ratio (compressor outlet pressure/inlet pressure) is obtained with the function of compressor rotational speed and the fluid flow rate. The data cover a broad region from sub-critical to supercritical pressure. Such data were obtained for the first time. No unstable phenomenon was observed in the area where the CO2 properties change sharply. Data of the pressure ratio vs. flow rate were coincident with the fundamental compressor theory.

Author(s):  
Pau Cutrina Vilalta ◽  
Hui Wan ◽  
Soumya S. Patnaik

Abstract In this paper, we use various regression models and Artificial Neural Network (ANN) to predict the centrifugal compressor performance map. Particularly, we study the accuracy and efficiency of Gaussian Process Regression (GPR) and Artificial Neural Networks in modelling the pressure ratio, given the mass flow rate and rotational speed of a centrifugal compressor. Preliminary results show that both GPR and ANN can predict the compressor performance map well, for both interpolation and extrapolation. We also study the data augmentation and data minimzation effects using the GPR. Due to the inherent pressure ratio data distribution in mass-flow-rate and rotational-speed space, data augmentation in the rotational speed is more effective to improve the ANN performance than the mass flow rate data augmentation.


1990 ◽  
Vol 112 (1) ◽  
pp. 25-29 ◽  
Author(s):  
H. Hayami ◽  
Y. Senoo ◽  
K. Utsunomiya

Low-solidity circular cascades, conformally transformed from high-stagger linear cascades of double-circular-arc vanes with solidity 0.69, were used as a part of the diffuser system of a transonic centrifugal compressor. Performance test results were compared with data of the same compressor with a vaneless diffuser. Good compressor performance and a wider flow range as well as a higher pressure ratio and a higher efficiency, superior to those with a vaneless diffuser, where the flow range was limited by choke of the impeller, were demonstrated. The test circular cascade diffusers demonstrated a good pressure recovery over a wide range of flow angles, even when the inflow Mach number to the cascade was over unity.


2019 ◽  
Vol 9 (19) ◽  
pp. 4057 ◽  
Author(s):  
Cho ◽  
Bae ◽  
Jeong ◽  
Lee ◽  
Lee

To overcome the degradation of the cycle efficiency of a supercritical carbon dioxide (S-CO2) Brayton cycle with dry cooling, this study proposes an improved design of an S-CO2 centrifugal compressor. The conventional air centrifugal compressor can achieve higher efficiency as backsweep angle increases. However, the structural issue restricts the maximum allowable angle (−50~−56°). In this study, an S-CO2 centrifugal compressor performance was examined while changing the backward sweep angle at impeller exit to study if the previous optimum backsweep angle for an air centrifugal compressor is still valid when the fluid has changed. It is shown through an analysis that an S-CO2 centrifugal compressor can achieve the highest efficiency at −70° backsweep angle, which is greater than the typical design value. The S-CO2 centrifugal compressor is less restricted from a structural integrity issue because it has low relative Mach number regardless of the low sound speed near critical point (Tc = 304.11 K, Pc = 7377 kPa). It is also shown in the paper that the variation of compressibility factor does not impact on its total to total efficiency since its Mach number is still lower than unity. Finally, it is also shown that a backward sweep impeller can achieve higher pressure ratio and operate stably in wider range as the mass flow rate is decreased. As further works, the suggested concept will be validated by the structural analysis and the compressor performance test.


Author(s):  
H. Hayami ◽  
Y. Senoo ◽  
K. Utsunomiya

Low-solidity circular cascades, conformally transformed from high-stagger linear cascades of double-circular-arc vanes with solidity 0.69, were used as a part of the diffuser system of a transonic centrifugal compressor. Performance test results were compared with data of the same compressor with a vaneless diffuser. Good compressor performance, a wider flow range as well as a higher pressure ratio and a higher efficiency, superior to those with a vaneless diffuser, where the flow range was limited by choke of the impeller, were demonstrated. The test circular cascade diffusers demonstrated a good pressure recovery over a wide range of flow angles, even when the inflow Mach number to the cascade was over unity.


Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


Author(s):  
Ahmet Onder ◽  
Rafet Yapici ◽  
Omer Incebay

The use of substitute fluid with similar rheological properties instead of blood is important due to ethical concerns and high blood volume consumption in pump performance test before clinical applications. The performance of a centrifugal blood pump with hydrodynamic journal bearing is experimentally tested using Newtonian 40% aqueous glycerin solution (GS) and non-Newtonian aqueous xanthan gum solution of 600 ppm (XGS) as working fluids. Experiments are performed at four different rotational speeds which are 2700, 3000, 3300, and 3600 rpm; experiments using GS reach between 8.5% and 37.2% higher head curve than experiments using the XGS for every rotational speed. It was observed that as the rotational speed and flow rate increase, the head curve difference between GS and XGS decreases. This result can be attributed to the friction reduction effect when using XGS in experiments at high rotation speed and high flow rate. Moreover, due to different fluid viscosities, differences in hydraulic efficiency were observed for both fluids. This study reveals that the use of Newtonian fluids as working fluids is not sufficient to determine the actual performance of a blood pump, and the performance effects of non-Newtonian fluids are remarkably important in pump performance optimizations.


Author(s):  
Hemant Kumar ◽  
Chetan S. Mistry

Abstract The Supercritical carbon-dioxide Brayton cycle main attraction is due to the Supercritical characteristic of the working fluid, carbon-dioxide (SCO2). Some of the advantages of using SCO2 are relatively low turbine inlet temperature, the compression work will be low, and the system will be compact due to the variation of thermodynamic properties (like density, and specific heat ratio) of SCO2 near the critical point. SCO2 behave more like liquid when its state is near the critical point (Total Pressure = 7.39 MPa, Total Temperature = 305 K), operating compressor inlet near critical point can minimize compression work. For present study the centrifugal compressor was designed to operate at 75,000 rpm with pressure ratio (P.R) = 1.8 and mass flow rate = 3.53 kg/s as available from Sandai report. Meanline design for centrifugal compressor with SCO2 properties was done. The blade geometry was developed using commercial CAD Ansys Bladegen. The flow domain was meshed using Ansys TurboGrid. ANSYS CFX was used as a solver for present numerical study. The thermodynamic properties of SCO2 were imported from the ANSYS flow material library using SCO2.RPG [NIST thermal physics properties of fluid system]. In order to ensure the change in flow physics the mesh independence study was also conducted. The present paper discuss about the performance and flow field study targeting different mass flow rates as exit boundary condition. The comparison of overall performance (Pressure Ratio, the Blade loading, Stage efficiency and Density variation) was done with three different mass flow rates. The designed and simulated centrifugal compressor meets the designed pressure rise requirement. The variation of mass flow rate on performance of centrifugal compressor was tend to be similar to conventional centrifugal compressor. The paper discusses about the effect of variation in density, specific heat ratio and pressure of SCO2 with different mass flow outlet condition. The performance map of numerical study were validated with experiment results and found in good agreement with experimental results. The change in flow properties within the rotor flow passage are found to be interesting and very informative for future such centrifugal compressor design for special application of SCO2 Brayton cycle. 80% mass flow rate has given better results in terms of aerodynamic performance. Abrupt change in thermodynamic properties was observed near impeller inlet region. Strong density variations are observed at compressor inlet.


Author(s):  
Mingyang Yang ◽  
Ricardo Martinez-Botas ◽  
Yangjun Zhang ◽  
Xinqian Zheng ◽  
Takahiro Bamba ◽  
...  

Large feasible operation range is a challenge for high pressure ratio centrifugal compressor of turbocharger in vehicle engine. Self-Recycling-Casing-Treatment (SRCT) is a widely used flow control method to enlarge the range for this kind of compressor. This paper investigates the influence of symmetrical/asymmetrical SRCT (ASRCT) on the stability of a high pressure ratio centrifugal compressor by experimental testing and numerical simulation. Firstly, the performance of the compressor with/without SRCT is tested is measured investigate the influence of flow distortion on the stability of compressor as well as the numerical method validation. Then detailed flow field investigation is conducted by experimental measurement and the numerical method to unveil the reasons for stability enhancement by symmetrical/asymmetrical SRCT. Results show that static pressure distortion at impeller outlet caused by the volute can make passages be confronted with flow distortion less stable than others because of their larger positive slope of T-S pressure ratio performance at small flow rate. SRCT can depress the flow distortion and reduce the slope by non-uniform recycling flow rate at impeller inlet. Moreover, ASRCT can redistribute the recycling flow in circumferential direction according to the asymmetric geometries. When the largest recycling flow rate is imposed on the passage near the distorted static pressure, the slope will be the most effectively reduced. Therefore, the stability is effectively enhanced by the optimized recycling flow device.


Author(s):  
Hans E. Wettstein

Polytropic change of state calculations are used within many thermodynamic cycle analysis tasks for turbomachinery like gas turbines or compressors. The typical approach is using formulas, which are theoretically valid for ideal gas conditions only. But often gases are used, which do certainly not behave like ideal gases. This is motivation to check how and which polytropic change of state algorithms can be used for real gases or corresponding mixtures. There is a vast experience on polytropic efficiencies achievable with existing turbomachinery. Manufacturers calibrate their performance analysis with real test results for compensating potential deviations from their analysis approach. But they normally do not disclose their approaches for the thermodynamic calculation and the corrections made based on their test results. But for investigations of new thermodynamic cycles before the stage of development with an available demonstrator a best possible prediction of the performance is desired. In this paper the assumptions and formulas for calculating polytropic changes of state and polytropic efficiencies are gathered from literature. The most fundamental assumption is based on a constant dissipation rate during the polytropic change of state. It could be tracked back to Zeuner, Stodola and Dzung. A numerically convenient approximation is the “polytropic exponent approach”. It fulfills the first assumption for an ideal gas but it is only an approximation for real gases. The temperature after a polytropic change of state is defined by its initial condition, the pressure ratio and the polytropic efficiency. Three different calculation algorithms are compared here: The recursive “constant dissipation rate algorithm” suggested by the author, the most used “ideal gas formula” and the “polytropic exponent formula” as the most used approximation for real gases. Numeric results for compression from 1bar to up to 100bar are shown for dry air, Argon, Neon, Nitrogen, Oxygen and CO2. The deviations of the different calculation approaches are considerable.


Sign in / Sign up

Export Citation Format

Share Document