Theoretical Research on Two-Phase Flow Instability in Parallel Rectangular Channels Under Periodic Perturbation

Author(s):  
Libo Qian ◽  
Jian Deng ◽  
Tao Huang ◽  
Rong Cai

Abstract A theoretical model for Density Wave Oscillations (DWOs) flow instability in parallel rectangular channels under periodic heaving motion is established with a lumped mathematical model based on homogenous hypothesis. The parallel rectangular channels comprise of the entrance section, the heating section, the riser section and the upper- and lower plenums, which guarantee the isobaric pressure drop condition between channels and the model consists of boiling channel model, pressure drop model, parallel channel model, additional pressure drop model generated by heaving motions, the constitutive and numerical models. The effect of periodic perturbation is introduced through additional pressure drop in the momentum equation. The model is validated with experimental data of a twin-rectangular-channel flow instability experiment under static condition. Then the flow instability in parallel-rectangular-channel system is studied under periodic perturbation and the margin of flow instability and the threshold power of the system under static condition is calculated as basis condition for comparison. The effect of the amplitude and period of perturbation is analyzed analytically and the results show that the amplitude and period of perturbation shows little effect on flow instability. While when the additional pressure difference introduced by heaving motion is comparable with that under static condition, the effect of amplitude becomes stronger. And the period of perturbation strongly effects the threshold power when it is identical to that of natural period of the system, which can be explained by resonance between the perturbation and the system. And this effect is even stronger when the asymmetric heating condition is introduced.

Author(s):  
Libo Qian ◽  
Yingxian Gao ◽  
Shuhua Ding

A theoretical model for flow instability in parallel rectangular channels under ocean conditions was established using lumped method based on the homogeneous model. The model consists of flow instability under static condition, the model of additional forces generated by ocean conditions, the constitutive and numerical models. The effect of ocean conditions was introduced through additional forces in the momentum equation generated by ocean conditions. The code was validated with the experimental data of flow instability under static conditions. Then the margin of flow instability, the threshold power and the periods of the system under static condition was calculated as a basis condition for comparison. The effect of the heaving condition on flow instability will be analyzed analytically. Besides these, the effect of asymmetric heating and throttling under heaving condition will be shown.


Author(s):  
Xiaoyan Wang ◽  
Siyang Huang ◽  
Wenxi Tian ◽  
Lie Chen ◽  
Suizheng Qiu ◽  
...  

In order to study the effect of rolling motion on flow instability of parallel rectangular channels of natural circulation, the natural circulation reactor simulation system is used for physical prototype. And theory analysis model of parallel rectangular channels of natural circulation system under rolling motion is established and coded by Fortran. The results of the program are verified to the experiments, and the results are in good agreement. The flow instability boundaries of different pressure under static and rolling motion are calculated respectively. The results show that: 1) under static condition, with the increase of the pressure, the instability boundary line changes, and the system becomes more stable; 2) under rolling conditions, the heating power of instability boundary decreases comparing to the stable conditions. The instability occurs earlier; 3) the stability of the system decreases with the increasing of rolling amplitude and frequency.


Author(s):  
Donghua Lu

The density wave oscillation (DWO) was investigated with parallel rectangular channel test sections, which have 2mm*25mm flow cross section. Test parameters are pressure 1MPa–10MPa, mass velocity 200kg/m2s–800kg/m2, and inlet subcooling 10°C–50°C. The experimental data show that heat flux rises with high mass velocity, inlet subcooling or system pressure at the stable/unstable boundary. In them, increasing mass velocity can greatly improve stability of this two parallel channel system. Period of the oscillation becomes shorter while mass velocity rises, but when inlet subcooling is increased, it becomes longer. The comparison between data from rectangular channels and round tubes indicates they have the same trend based on the dimensionless phase change number and subcooling number.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jean Collomb ◽  
Pascale Balland ◽  
Pascal Francescato ◽  
Yves Gardet ◽  
David Leh ◽  
...  

Molds used to manufacture high-performance composites currently do not meet the demand of manufacturers in terms of production rate due to massive mold designs, using straight-through heating channels, that are not thermally reactive. In this paper, using a thermal finite element model, the thermomechanical responses of an existing massive and conventional mold is observed; then, thermomechanical optimizations are carried out on a circular heating channel mold and on a rectangular heating channel mold. The objective of this paper is two-fold: (i) confirm the need to change design rules for molds considering technological aspects (e.g., pressure drop and fluid nature) and (ii) validate the advantages of an innovative concept of a low thermal inertia mold with rectangular heating channels. Results of this study confirm the need to reduce the mass of structures to increase heating rates and the importance of taking into account technological data (heat transfer fluid, pressure drop) to ensure the optimal convective exchange. After optimization, a decrease greater than 75% in heating time for the circular channel model and up to 88% for the rectangular channel model was observed. Moreover, the antagonistic nature between heating rate and thermal homogeneity of the molding surface and between heating rate and mechanical strength is confirmed.


2020 ◽  
Vol 319 ◽  
pp. 02004
Author(s):  
Muhammad Akif Rahman ◽  
Md Badrath Tamam ◽  
Md Sadman Faruque ◽  
A.K.M. Monjur Morshed

In this paper a numerical analysis of three-dimensional laminar flow through rectangular channel heat sinks of different geometric configuration is presented and a comparison of thermal performance among the heat sinks is discussed. Liquid water was used as coolant in the aluminum made heat sink with a glass cover above it. The aspect ratio (section height to width) of rectangular channels of the mini-channel heat sink was 0.33. A heat flux of 20 W/cm2 was continuously applied at the bottom of the channel with different inlet velocity for Reynold’s number ranging from 150 to 1044. Interconnectors and obstacles at different positions and numbers inside the channel were introduced in order to enhance the thermal performance. These modifications cause secondary flow between the parallel channels and the obstacles disrupt the boundary layer formation of the flow inside the channel which leads to the increase in heat transfer rate. Finally, Nusselt number, overall thermal resistance and maximum temperature of the heat sink were calculated to compare the performances of the modified heat sinks with the conventional mini channel heat sink and it was observed that the heat sink with both interconnectors and obstacles enhanced the thermal performance more significantly than other configurations. A maximum of 36% increase in Nusselt number was observed (for Re =1044).


Fluids ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 188
Author(s):  
M. Ziad Saghir ◽  
Ayman Bayomy ◽  
Md Abdur Rahman

Heat enhancement and heat removal have been the subject of considerable research in the energy system field. Flow-through channels and pipes have received much attention from engineers involved in heat exchanger design and construction. The use of insert tape is one of many ways to mix fluids, even in a laminar flow regime. The present study focused on the use of different twisted tapes with different pitch-to-pitch distances and lengths to determine the optimum design for the best possible performance energy coefficient. The results revealed that twisted tape of one revolution represented the optimal design configuration and provided the largest Nusselt number. The length of the tape played a major role in the pressure drop. The results revealed that the insertion of a shorter twisted tape can create mixing while minimizing the changes in the pressure drop. In particular, the best performance evaluation criterion is found for a short tape located towards the exit of the channel. The highest performance energy coefficient was obtained for the half-twisted tape for a Reynolds number varying between 200 and 600.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4617
Author(s):  
Sanghyun Nam ◽  
Dae Yeon Kim ◽  
Youngwoo Kim ◽  
Kyung Chun Kim

Heat transfer under flow boiling is better in a rectangular channel filled with open-cell metal foam than in an empty channel, but the high pressure drop is a drawback of the empty channel method. In this study, various types of metal foam insert configurations were tested to reduce the pressure drop while maintaining high heat transfer. Specifically, we measured the boiling heat transfer and pressure drop of a two-phase vertical upward flow of R245fa inside a channel. To measure the pressure and temperature differences of the metal foam, differential pressure transducers and T-type thermocouples were used at both ends of the test section. While the saturation pressure was kept constant at 5.9 bar, the steam quality at the inlet of the test section was changed from 0.05 to 0.99. The channel height, moreover, was 3 mm, and the mass flux ranged from 133 to 300 kg/m2s. The two-phase flow characteristics were observed through a high-speed visualization experiment. Heat transfer tended to increase with the mean vapor quality, and, as expected, the fully filled metal foam channel offered the highest thermal performance. The streamwise insert pattern model had the lowest heat transfer at a low mass flux. However, at a higher mass flux, the three different insert models presented almost the same heat transfer coefficients. We found that the streamwise pattern model had a very low pressure drop compared to that of the spanwise pattern models. The goodness factors of the flow area and the core volume of the streamwise patterned model were higher than those of the full-filled metal foam channel.


Author(s):  
Jianyun Shuai ◽  
Rudi Kulenovic ◽  
Manfred Groll

Flow boiling in small-sized channels attracted extensive investigations in the past two decades due to special requirements for transfer of high heat fluxes from narrow spaces in various industrial applications. Experiments on various aspects of flow boiling in narrow channels were carried out and theoretical attempts were undertaken. But these investigations showed large differences, e.g. up till now the knowledge on the development of flow patterns in small non-circular flow passages is very limited. This paper deals with investigations on flow boiling of water in two rectangular channels with dimensions (width×depth) 2.0×4.0 mm2 and 0.5×2.0 mm2 (corresponding hydraulic diameters are 2.67 mm and 0.8 mm). The pressure at the test section exit is atmospheric. For steady-state experimental conditions the effects of heat flux, mass flux and inlet subcooling on the boiling heat transfer coefficient and the pressure drop are investigated. Flow patterns and the transition of flow patterns along the channel axis are visualized and documented with a video-camera. Bubbly flow, slug flow and annular flow are distinguished in both channels. Preliminary flow pattern maps are generated.


Sign in / Sign up

Export Citation Format

Share Document