Is Articular Cartilage Orthotropic in Compression?

1999 ◽  
Author(s):  
Michael A. Soltz ◽  
Robert L. Mauck ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

Abstract Many studies have demonstrated that articular cartilage is anisotropic in tension, based on tensile tests of tissue strips harvested parallel to the articular surface, along and perpendicular to the local split line direction (e.g., Akizuki et al., 1986; Kempson et al., 1968; Schmidt et al., 1990; Woo et al., 1979). The observed differences in the tensile modulus suggest that the material symmetry of cartilage in tension is no higher than orthotropy, since two orthogonal planes of symmetry (with unit normals parallel and perpendicular to the split line direction) automatically define a third plane of symmetry mutually perpendicular to the other two. However, the properties of articular cartilage differ significantly in tension and compression (Cohen et al., 1998; Soulhat et al., 1998) and it remains to be established whether cartilage is anisotropic in compression as well. Only one previous preliminary study has investigated the compressive modulus of cartilage along two mutually perpendicular directions (Jurvelin et al., 1996), reporting significant differences.

Author(s):  
Seonghun Park ◽  
Ramaswamy Krishnan ◽  
Steven B. Nicoll ◽  
Gerard A. Ateshian

Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than compression. Theoretical analyses have suggested that this tension-compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression [1]. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone.


2021 ◽  
Vol 6 (1) ◽  
pp. 247301142097570
Author(s):  
Mossub Qatu ◽  
George Borrelli ◽  
Christopher Traynor ◽  
Joseph Weistroffer ◽  
James Jastifer

Background: The intermetatarsal joint between the fourth and fifth metatarsals (4-5 IM) is important in defining fifth metatarsal fractures. The purpose of the current study was to quantify this joint in order to determine the mean cartilage area, the percentage of the articulation that is cartilage, and to give the clinician data to help understand the joint anatomy as it relates to fifth metatarsal fracture classification. Methods: Twenty cadaver 4-5 IM joints were dissected. Digital images were taken and the articular cartilage was quantified by calibrated digital imaging software. Results: For the lateral fourth proximal intermetatarsal articulation, the mean area of articulation was 188 ± 49 mm2, with 49% of the area composed of articular cartilage. The shape of the articular cartilage had 3 variations: triangular, oval, and square. A triangular variant was the most common (80%, 16 of 20 specimens). For the medial fifth proximal intermetatarsal articulation, the mean area of articulation was 143 ± 30 mm2, with 48% of the joint surface being composed of articular cartilage. The shape of the articular surface was oval or triangular. An oval variant was the most common (75%, 15 of 20 specimens). Conclusion: This study supports the notion that the 4-5 IM joint is not completely articular and has both fibrous and cartilaginous components. Clinical Relevance: The clinical significance of this study is that it quantifies the articular surface area and shape. This information may be useful in understanding fifth metatarsal fracture extension into the articular surface and to inform implant design and also help guide surgeons intraoperatively in order to minimize articular damage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernhard Ungerer ◽  
Ulrich Müller ◽  
Antje Potthast ◽  
Enrique Herrero Acero ◽  
Stefan Veigel

AbstractIn the development of structural composites based on regenerated cellulose filaments, the physical and chemical interactions at the fibre-matrix interphase need to be fully understood. In the present study, continuous yarns and filaments of viscose (rayon) were treated with either polymeric diphenylmethane diisocyanate (pMDI) or a pMDI-based hardener for polyurethane resins. The effect of isocyanate treatment on mechanical yarn properties was evaluated in tensile tests. A significant decrease in tensile modulus, tensile force and elongation at break was found for treated samples. As revealed by size exclusion chromatography, isocyanate treatment resulted in a significantly reduced molecular weight of cellulose, presumably owing to hydrolytic cleavage caused by hydrochloric acid occurring as an impurity in pMDI. Yarn twist, fibre moisture content and, most significantly, the chemical composition of the isocyanate matrix were identified as critical process parameters strongly affecting the extent of reduction in mechanical performance. To cope with the problem of degradative reactions an additional step using calcium carbonate to trap hydrogen ions is proposed.


Cartilage ◽  
2021 ◽  
pp. 194760352098877
Author(s):  
Roy D. Bloebaum ◽  
Andrew S. Wilson ◽  
William N. Martin

Objective There has been a debate as to the alignment of the collagen fibers. Using a hand lens, Sir William Hunter demonstrated that the collagen fibers ran perpendicular and later aspects were supported by Benninghoff. Despite these 2 historical studies, modern technology has conflicting data on the collagen alignment. Design Ten mature New Zealand rabbits were used to obtain 40 condyle specimens. The specimens were passed through ascending grades of alcohol, subjected to critical point drying (CPD), and viewed in the scanning electron microscope. Specimens revealed splits from the dehydration process. When observing the fibers exposed within the opening of the splits, parallel fibers were observed to run in a radial direction, normal to the surface of the articular cartilage, radiating from the deep zone and arcading as they approach the surface layer. After these observations, the same samples were mechanically fractured and damaged by scalpel. Results The splits in the articular surface created deep fissures, exposing parallel bundles of collagen fibers, radiating from the deep zone and arcading as they approach the surface layer. On higher magnification, individual fibers were observed to run parallel to one another, traversing radially toward the surface of the articular cartilage and arcading. Mechanical fracturing and scalpel damage induced on the same specimens with the splits showed randomly oriented fibers. Conclusion Collagen fiber orientation corroborates aspects of Hunter’s findings and compliments Benninghoff. Investigators must be aware of the limits of their processing and imaging techniques in order to interpret collagen fiber orientation in cartilage.


1977 ◽  
Vol 99 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Joseph M. Mansour ◽  
Van C. Mow

Fluid flow and mass transport mechanisms associated with articular cartilage function are important biomechanical processes of normal and pathological synovial joints. A three-layer permeable, two-phase medium of an incompressible fluid and a linear elastic solid are used to model the flow and deformational behavior of articular cartilage. The frictional resistance of the relative motion of the fluid phase with respect to the solid phase is given by a linear diffusive dissipation term. The subchondral bony substrate is represented by an elastic solid. The three-layer model of articular cartilage is chosen because of the known histological, ultrastructural, and biomechanical variations of the tissue properties. The calculated flow field shows that for material properties of normal healthy articular cartilage the tissue creates a naturally lubricated surface. The movement of the interstitial fluid at the surface is circulatory in manner, being exuded in front and near the leading half of the moving surface load and imbibed behind and near the trailing half of the moving load. The flow fields of healthy tissues are capable of sustaining a film of fluid at the articular surface whereas pathological tissues cannot.


2021 ◽  
pp. 014616722110530
Author(s):  
Saulo Fernández ◽  
Tamar Saguy ◽  
Elena Gaviria ◽  
Rut Agudo ◽  
Eran Halperin

We examined the role that witnesses play in triggering humiliation. We hypothesized that witnesses trigger humiliation because they intensify the two core appraisals underlying humiliation: unfairness and internalization of a devaluation of the self. However, we further propose that witnesses are not a defining characteristic of humiliating situations. Results of a preliminary study using an event-recall method confirmed that witnesses were as characteristic of humiliating episodes as of those that elicited shame or anger. In Experiments 1 and 2, we manipulated the presence (vs. absence) of witnesses when a professor devalued participants and the hostile tone of this devaluation. As hypothesized, in both experiments, witnesses indirectly increased humiliation via the appraisal of unfairness. Results of Experiment 2 revealed that the presence of witnesses also interacted with hostility, enhancing humiliation. As expected, this moderating effect occurred via the other key appraisal of humiliation (i.e., internalization).


2021 ◽  
Author(s):  
DANDAN ZHANG ◽  
XINGKANG SHE ◽  
YIPENG HE ◽  
WESLEY A. CHAPKIN, ◽  
VI T. BREGMAN ◽  
...  

Carbon fiber reinforced polymer (CFRP) composites are lightweight materials with superior strength but are expensive due to the increased cost of carbon fibers (CFs). The addition of carbon nanotubes (CNTs) to polymer nanocomposites are becoming an excellent alternative to CF due to their unique combination of electrical, thermal, and mechanical properties. With the application of an electric field across the CNT/polymer mixture before curing, CNTs will not only be aligned along the electric field direction, but also form networks after reaching to a certain degree of alignment. In this study, an alternating current (AC) electric field was applied continuously to CNT/CF/Epoxy hybrid composites before curing. By cutting off the applied voltage when the monitored electric current increased, the degree of networking of CNTs between two CF tows was controlled. The relative electric field strength around the end of conductive carbon fiber tows in the epoxy matrix was modeled using COMSOL Multiphysics. It increased after applying AC electric field parallel to the CF tows, thereby increasing the alignment degree of CNTs and building a network to bridge the CF tows. The preliminary results indicate that the microhardness and tensile modulus between two CF tows are increased due to the networking of CNTs in this area. The fracture surface of the specimens after tensile tests were characterized to reveal more details of the microstructure.


2018 ◽  
Vol 9 (4) ◽  
pp. 60 ◽  
Author(s):  
Giuseppe Cavallaro ◽  
Giuseppe Lazzara ◽  
Lorenzo Lisuzzo ◽  
Stefana Milioto ◽  
Filippo Parisi

We investigated the efficacy of several nanoclays (halloysite, sepiolite and laponite) as nanofillers for Mater-Bi, which is a commercial bioplastic extensively used within food packaging applications. The preparation of Mater-Bi/nanoclay nanocomposite films was easily achieved by means of the solvent casting method from dichloroethane. The prepared bio-nanocomposites were characterized by dynamic mechanical analysis (DMA) in order to explore the effect of the addition of the nanoclays on the mechanical behavior of the Mater-Bi-based films. Tensile tests found that filling Mater-Bi with halloysite induced the most significant improvement of the mechanical performances under traction force, while DMA measurements under the oscillatory regime showed that the polymer glass transition was not affected by the addition of the nanoclay. The tensile properties of the Mater-Bi/halloysite nanotube (HNT) films were competitive compared to those of traditional petroleum plastics in terms of the elastic modulus and stress at the breaking point. Both the mechanical response to the temperature and the tensile properties make the bio-nanocomposites appropriate for food packaging and smart coating purposes. Here, we report a preliminary study of the development of sustainable hybrid materials that could be employed in numerous industrial and technological applications within materials science and pharmaceutics.


Sign in / Sign up

Export Citation Format

Share Document