Robust Steering and Differential Braking Control for Automated Guidance of Tractor-Semitrailer Combination Vehicles

2000 ◽  
Author(s):  
Jeng-Yu Wang ◽  
Masayoshi Tomizuka

Abstract In this paper, a robust linear steering and differential braking controller is designed for the automated guidance of tractor-semitrailer combination vehicles using the H∞ loop-shaping methodology. Only the articulation angle, the lateral errors at the front and rear axle of the tractor, and the angular velocities of the rear wheels of the trailer or the brake line pressure signals, are assumed to be available for the synthesis of control inputs. The controller is designed to ensure the robustness to model uncertainties due to variations in vehicle longitudinal speed, road adhesion coefficient and trailer cargo load. Closed-loop simulation results show the robustness of the proposed controller and the resulting smaller lateral error at the trailer end when compared to the controller using the steering input only. More damped transient responses of articulation angle when using the steering and braking control also improve the yaw stability of the trailer.

2011 ◽  
Vol 403-408 ◽  
pp. 4880-4887
Author(s):  
Sassan Azadi

This research work was devoted to present a novel adaptive controller which uses two negative stable feedbacks with a positive unstable positive feedback. The positive feedback causes the plant to do the break, therefore reaching the desired trajectory with tiny overshoots. However, the two other negative feedback gains controls the plant in two other sides of positive feedback, making the system to be stable, and controlling the steady-state, and transient responses. This controller was performed for PUMA-560 trajectory planning, and a comparison was made with a fuzzy controller. The fuzzy controller parameters were obtained according to the PSO technique. The simulation results shows that the novel adaptive controller, having just three parameters, can perform well, and can be a good substitute for many other controllers for complex systems such as robotic path planning.


Author(s):  
Olugbenga M. Anubi ◽  
Carl D. Crane

This paper presents the control design and analysis of a non-linear model of a MacPherson suspension system equipped with a magnetorheological (MR) damper. The model suspension considered incorporates the kinematics of the suspension linkages. An output feedback controller is developed using an ℒ2-gain analysis based on the concept of energy dissipation. The controller is effectively a smooth saturated PID. The performance of the closed-loop system is compared with a purely passive MacPherson suspension system and a semi-active damper, whose damping coefficient is tunned by a Skyhook-Acceleration Driven Damping (SH-ADD) method. Simulation results show that the developed controller outperforms the passive case at both the rattle space, tire hop frequencies and the SH-ADD at tire hop frequency while showing a close performance to the SH-ADD at the rattle space frequency. Time domain simulation results confirmed that the control strategy satisfies the dissipative constraint.


2005 ◽  
Vol 15 (02) ◽  
pp. 567-604 ◽  
Author(s):  
SHIHUA LI ◽  
YU-PING TIAN

In this paper, we develop a simple linear feedback controller, which employs only one of the states of the system, to stabilize the modified Chua's circuit to an invariant set which consists of its nontrivial equilibria. Moreover, we show for the first time that the closed loop modified Chua's circuit satisfies set stability which can be considered as a generalization of common Lyapunov stability of an equilibrium point. Simulation results are presented to verify our method.


Author(s):  
Khan Badshah ◽  
Qin Yongyuan

<p class="MsoNormal" style="margin-top: 12.0pt; margin-right: 0in; margin-bottom: 6.0pt; margin-left: 0in; text-align: justify;"><em><span style="font-size: 9.0pt; font-family: &quot;Arial&quot;,sans-serif; mso-ascii-theme-font: minor-bidi; mso-hansi-theme-font: minor-bidi; mso-bidi-theme-font: minor-bidi;" lang="EN-GB">This paper discusses the techniques of attitude, velocity ad position estimation from GNSS carrier phase measurements, and investigates the performance of the lower precision MEMS-based INS/GNSS system based on carrier phase measurements. Double differenced carrier phase measurements provide more accurate velocity and position estimation compared to code and Doppler measurements. However, integer ambiguity is required to be removed for precise positioning. Multiples<span style="color: red;"> </span>antennae approach is used to derive the attitude information from carrier phase measurements in order to control the large initial misalignment angles for initialization of the integration process or to utilize during benign dynamics. Lever arm effect is considered to compensate for the separation of GNSS antenna and IMU location. The derived three GNSS observables are used to correct the INS through optimal Kalman filtering in a closed loop. Simulation results indicates the effectiveness of the integrated system for airborne as well as for land navigation vehicles</span></em><span lang="EN-GB">. </span></p><div id="_mcePaste" class="mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;"><p class="MsoNormal" style="margin-top: 12.0pt; margin-right: 0in; margin-bottom: 6.0pt; margin-left: 0in; text-align: justify;"><em><span style="font-size: 9.0pt; font-family: &quot;Arial&quot;,sans-serif; mso-ascii-theme-font: minor-bidi; mso-hansi-theme-font: minor-bidi; mso-bidi-theme-font: minor-bidi;" lang="EN-GB">This paper discusses the techniques of attitude, velocity ad position estimation from GNSS carrier phase measurements, and investigates the performance of the lower precision MEMS based INS/GNSS system based on carrier phase measurements. Double differenced carrier phase measurements provide more accurate velocity and position estimation compared to code and Doppler measurements. However, integer ambiguity is required to be removed for precise positioning. Multiples<span style="color: red;"> </span>antennae approach is used to derive the attitude information from carrier phase measurements in order to control the large initial misalignment angles for initialization of the integration process or to utilize during benign dynamics. Lever arm effect is considered to compensate for the separation of GNSS antenna and IMU location. The derived three GNSS observables are used to correct the INS through optimal Kalman filtering in a closed loop. Simulation results indicates the effectiveness of the integrated system for airborne as well as for land navigation vehicles</span></em><span lang="EN-GB">. </span></p></div>


2004 ◽  
Vol 14 (04) ◽  
pp. 1439-1445 ◽  
Author(s):  
S. S. GE

In this letter, we reconsider the problem of controlling chaos in the well-known Lorenz system. Firstly, the difficulty in controlling the Lorenz system is discussed in the general strict-feedback form. Then, singularity-free adaptive control is presented for the Lorenz system with three key parameters unknown by exploiting the physical property of the system using decoupled backstepping design. The proposed controller guarantees the asymptotic convergence of the output and the boundedness of all the signals in the closed-loop system. Simulation results are conducted to show the effectiveness of the approach.


Author(s):  
Takuzo Iwatsubo ◽  
Shiro Arii ◽  
Kei Hasegawa ◽  
Koki Shiohata

Abstract This paper presents a method for analyzing the dynamic characteristics of driving systems consisting of multiple belts and pulleys. First, the algorithm which derives the linear equations of motion of arbitrary multi-coupled belt systems is shown. Secondly, by using the algorithm, the computer program which formulates the equations of motion and calculates the transient responses of the belt system is presented. The fundamental idea of the algorithm is as follows: Complicated belt systems consisting of multiple belts and pulleys are regarded as combinations of simple belt systems consisting of a single belt and some pulleys. Therefore, the equations of motion of the belt systems can be derived by the superposition of the equations of motion of the simple belt systems. By means of this method, the responses of arbitrary multi-coupled belt systems can be calculated. Finally, to verify the usefulness of this method, the simulation results are compared with the experimental results.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


Author(s):  
T. Sundar ◽  
S. Sankar

<p>This Work deals with design, modeling and simulation of parallel cascaded buck boost converter inverter based closed loop controlled solar system. Two buck boost converters are cascaded in parallel to reduce the ripple in DC output. The DC from the solar cell is stepped up using boost converter. The output of the boost converter is converted to 50Hz AC using single phase full bridge inverter. The simulation results of open loop and closed loop systems are compared. This paper has presented a simulink model for closed loop controlled solar system.  Parallel cascaded buck boost converter is proposed for solar system.</p>


Author(s):  
Jiegao Wang ◽  
Clément M. Gosselin ◽  
Li Cheng

Abstract A new approach for the dynamic simulation of parallel mechanisms or mechanical systems is presented in this paper. This approach uses virtual springs and dampers to include the closed-loop constraints thereby avoiding the solution of differential-algebraic equations. Examples illustrating the approach are given and include the four-bar mechanism with both rigid and flexible links as well as the 6-dof Gough-Stewart platform. Simulation results are given for the four-bar linkages and the 6-dof manipulator. The results achieve a good agreement with the results obtained from other conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document