Mechanical Damage to the Intervertebral Disc Annulus Fibrosus Subjected to Cyclic Tensile Loading

Author(s):  
David A. Ryan ◽  
Jeffrey J. MacLean ◽  
James C. Iatridis

Damage progression in the circumferential direction of the disc annulus is likely to occur in vivo in response to cyclic loading with associated degradation in tensile material properties, yet this information is not available in the literature. We hypothesize that damage of the annulus will be increased by the number of cycles and magnitude of strain applied to the tissue. Therefore, the objective of this study is to obtain a quantitative relationship between number of cycles and magnitude of tensile strain and damage on the annulus fibrosus. Damage to the annulus is assessed through measurement of permanent deformation (% elongation) and peak stress in the tissue under cyclic loading conditions.

1974 ◽  
Vol 14 (01) ◽  
pp. 19-24 ◽  
Author(s):  
S.S. Peng ◽  
E.R. Podnieks ◽  
P.J. Cain

Abstract Specimens of Salem limestone were loaded cyclically at a frequency of 2 cycles/sec in uniaxial cyclic compression, tension, and compression-tension. The number of cycles to failure, maximum deformation for each cycle, and load-deformation hysteresis loops were recorded. The fatigue life and fatigue limit values under cyclic compressive loading are comparable with those under cyclic tensile loading, whereas under cyclic compressive-tensile loading they are considerably lower. Introduction The study of rock behavior in cyclic loading has been relatively ignored in the past, even though certain problems in rock mechanics are closely related to cyclic loading. These problems include the effects of percussive drilling and the vibrations generated by blasting. An understanding of the mechanisms of fatigue failure in rock can be expected to help improve drilling efficiency and prevent vibration damage caused by blasting. Because of the lack of bask information on rock behavior under cyclic loading, the Federal Bureau of Mines, Twin Cities Mining Research Center began in 1968 an extensive program for studying cyclic loading effects. This program included the investigation of the behavior of rock loaded cyclically at different frequencies under varying test geometries, loading configurations, and environments. In the high-frequency range, sonic power transducers are being used to apply cyclic loading at a frequency of 10,000 Hz, and an electromagnetic shaker is being used at frequencies from 100 to 1,000 Hz. In the low-frequency range, cyclic loading of 2 to 10 Hz is applied by a closed-loop servocontrolled electrohydraulic testing machine. In each frequency range, experiments are conducted to provide the following information: fatigue limits, fatigue life, energy dissipation, temperature induced in the specimen, and the time history of load and deformation. This paper presents the first phase of be results obtained on specimens of Salem limestone loaded in the low-frequency range. The early findings on the high-frequency effects were reported separately. Recently, the effect of cyclic loading on rock behavior has been receiving more attention and considerable information is being generated. General Loading Concept in Cyclic Loading In conventional strength tests the monotonic loading program is specified by the loading rate and control mode. For cyclic loading, where the load is a periodic function of time, the problem is more complex. To evaluate such material properties as fatigue life, the load must be described systematically and concisely in terms of physically significant parameters. parameters. For a general case, one approach is to divide the cyclic stress into time-independent and time-dependent components. The time-independent component (or mean stress) is the time average of the stress. A cyclic stress with an amplitude A and zero mean can be superimposed on this loading. For the usual case of cyclic loading with steady loading conditions, the stress can be described as follows.(1)= + (t), where f(t) is a periodic function of time, t, and can be represented by a sine or sawtooth wave. Other ways of describing the stress are available such as using the maximum and minimum stresses, which are related to the mean and amplitude:(2)max = . and(3)min = . The key issue is to describe the loading in terms that will correlate with the material properties of interest. The use of amplitude and mean stress to describe cyclic loading separates the time-dependent bona the time-independent portion of the stress because the effect of each portion of the loading should be investigated separately. In analyzing the effect of cyclic loading on rock, another significant factor is the large difference between the tensile strength and the compressive strength. P. 19


2005 ◽  
Vol 38 (3) ◽  
pp. 557-565 ◽  
Author(s):  
James C. Iatridis ◽  
Jeffrey J. MacLean ◽  
David A. Ryan

2004 ◽  
Vol 126 (2) ◽  
pp. 380-385 ◽  
Author(s):  
Douglas W. Van Citters ◽  
Francis E. Kennedy ◽  
John H. Currier ◽  
John P. Collier ◽  
Thomas D. Nichols

Total joint replacements traditionally employ ultra high molecular weight polyethylene (UHMWPE) as a bearing material due to its desirable material properties and biocompatibility. Failure of these polyethylene bearings can lead to expensive and risky revision surgery, necessitating a better understanding of UHMWPE’s tribological properties. A six-station rolling/sliding machine was developed to study the behavior of accelerated-aged UHMWPE in cylinder-on-cylinder contact. The normal load and sliding/rolling ratio in the oscillatory contacts can be controlled separately for each test station, as can the liquid test environment. Fatigue tests were run on the machine with UHMWPE versus cobalt-chrome cylinders in a distilled water environment at normal contact pressures of approximately 20 MPa. All specimens failed by subsurface cracking during tribotesting on the machine, and the failures were similar to those that occur in-vivo. The fatigue behavior of the polymer was analyzed to determine its relationship to oxidation and stress state in the rolling/sliding cylinder. At the 20 MPa test load, the number of cycles to fatigue failure by subsurface cracking was inversely proportional to the oxidation level. Analysis of the stress levels through the bulk of the polyethylene specimens and their relationship to the material properties provide insight as to why cracks initiate and propagate subsurface.


Author(s):  
Michael R. Breach

The qualification of welds other than full penetration groove welds exposed to cyclic loading using finite element methods requires an understanding of the basis behind classical methodologies. These methodologies usually address nominal stresses. The nominal stress (S-N) method was the first approach developed to try to understand this failure process and is still widely used in applications where the applied stress is nominally within the elastic range of the material and the number of cycles to failure is large. From this point of view, the nominal stress approach is best suited to that area of the fatigue process known as high cycle fatigue. Cracks and discontinuities will cause stress redistribution and concentrations leading to secondary and peak stresses additive to the nominal stress when referencing the S-N curves. Therefore, fundamental to the qualification of weldments of components and structures is the determination of the nominal stress field; however, this can be problematic for several reasons: • Secondary, Peak stress arising from structural discontinuities can mask the actual nominal stress field. • There may be an insufficient number of elements and/or integration points through the thickness to rely on linearization techniques, to separate the nominal stresses from the secondary and peak stresses due to the high cost of using bricks or tetrahedrons. • In complex shell structures, the nominal stress field in weldments that satisfies equilibrium against externally applied loads is not readily distinguished; this is due to the shear preponderance of mesh sensitive discontinuities. Herein, is a summary of methods to address the aforementioned problem and guidance in determining the true peak stresses and their qualification. Methods documented in ASME BPV Code Section VIII Div. 2, and various papers are compared. These methods will be used to assess existing methods that may be used in the industry. ASME BPV Code Section III Subsections NG and NB will be used as a basis to classify and qualify the weldment stresses.


2016 ◽  
Vol 853 ◽  
pp. 106-111 ◽  
Author(s):  
Yi Fu Chen ◽  
Guo Zheng Kang ◽  
Ru Tao ◽  
Han Jiang

Macroscopic cyclic tension-unloading experiments are conducted to investigate the cyclic deformation behaviors of CB filled vulcanized hydrogenated nitrile butadiene rubber at room temperature. In the load-controlled cyclic tension-unloading tests, remarkable ratchetting occurs, and the effects of the level and rate of cyclic loading on the ratchetting are also investigated. The ratcheting strain increases with the increasing mean stress and stress amplitude, and more obvious ratchetting is observed in the cyclic test with load-hold or at lower loading rate. In the displacement-controlled cyclic tension-unloading tests, the responding peak stress of the H-NBR decreases continuously, but the residual strain increases with the increasing number of cycles. Furthermore, the zero-stress hold at the end of cyclic test demonstrates that the residual strain will be recovered partially, which implies that the residual strain of the H-NBR after cyclic test consists of the reversible and irreversible parts.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 190 ◽  
Author(s):  
Qingmiao Li ◽  
Yunpei Liang ◽  
Quanle Zou

The mechanical properties and seepage characteristics of gas-bearing coal evolve with changes in the loading pattern, which could reveal the evolution of permeability in a protected coal seam and allow gas extraction engineering work to be designed by using the effect of mining multiple protective seams. Tests on gas seepage in raw coal under three paths (stepped-cyclic, stepped-increasing-cyclic, and crossed-cyclic loading and unloading) were carried out with a seepage tester under triaxial stress conditions. The permeability was subjected to the dual influence of stress and damage accumulation. After being subjected to stress unloading and loading, the permeability of coal samples gradually decreased and the permeability did not increase before the stress exceeded the yield stage of the coal samples. The mining-enhanced permeability of the coal samples in the loading stage showed a three-phase increase with the growth of stress and the number of cycles and exhibited an N-shaped increase under the stepped-cyclic loading while it linearly increased under the other two paths in the unloading stage. With the increase of peak stress and the accumulation of damage in coal samples, the sensitivity of the permeability of coal samples to stress gradually declined. The relationship between the damage variable and the number of cycles conformed to the Boltzmann function.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 465
Author(s):  
Wei-yao Guo ◽  
Feng-hai Yu ◽  
Yue Qiu ◽  
Tong-bin Zhao ◽  
Yun-liang Tan

It is generally acknowledged that the failure of the layer-crack structure is closely related to rock bursts (a layer-crack structure means a coal or rock rib that is cut by fractures that are parallel or sub-parallel to the surface of the rib). Understanding the mechanical behavior of the layer-crack structure under cyclic loading is beneficial for rock burst mitigation. This study experimentally investigated the influence of the geometry of vertical fissure (i.e., width, length and number) on the mechanical properties of layer-crack rock specimens. The results show that the sensitivity of parameters with respect to the geometry of the fissure from strong to weak is the number, length and width. First, the peak stress under cyclic loading increases by approximately 7.82%–17.35%, thereby exerting an obvious strengthening effect. Second, the fissure geometry slightly affects the energy evolution of the layer-crack specimen, i.e., the input energy density, elastic energy density and dissipated energy density all gradually increase with the increase of the number of cycles. However, when approaching a specimen failure, the increasing rates from quick to slow are the dissipated energy, input energy and elastic energy. Third, the damage variable of the layer-crack specimen shows a concave increasing trend with the increase of the number of cycles. When the number of cycles is equal, the damage increases with the increase of the number of fissures, but it decreases with the increase of the fissure length. Fourth, AE events occur shortly before specimen failures, but rapidly increase near the specimen failures. The accumulated AE events that lead to specimen failures decrease with the increase in the number of fissures. These results can provide some basic data for the research of rock bursts related to the failures of layer-crack structures.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Rose G. Long ◽  
Olivia M. Torre ◽  
Warren W. Hom ◽  
Dylan J. Assael ◽  
James C. Iatridis

There is currently a lack of clinically available solutions to restore functionality to the intervertebral disk (IVD) following herniation injury to the annulus fibrosus (AF). Microdiscectomy is a commonly performed surgical procedure to alleviate pain caused by herniation; however, AF defects remain and can lead to accelerated degeneration and painful conditions. Currently available AF closure techniques do not restore mechanical functionality or promote tissue regeneration, and have risk of reherniation. This review determined quantitative design requirements for AF repair materials and summarized currently available hydrogels capable of meeting these design requirements by using a series of systematic PubMed database searches to yield 1500+ papers that were screened and analyzed for relevance to human lumbar in vivo measurements, motion segment behaviors, and tissue level properties. We propose a testing paradigm involving screening tests as well as more involved in situ and in vivo validation tests to efficiently identify promising biomaterials for AF repair. We suggest that successful materials must have high adhesion strength (∼0.2 MPa), match as many AF material properties as possible (e.g., approximately 1 MPa, 0. 3 MPa, and 30 MPa for compressive, shear, and tensile moduli, respectively), and have high tensile failure strain (∼65%) to advance to in situ and in vivo validation tests. While many biomaterials exist for AF repair, few undergo extensive mechanical characterization. A few hydrogels show promise for AF repair since they can match at least one material property of the AF while also adhering to AF tissue and are capable of easy implantation during surgical procedures to warrant additional optimization and validation.


2021 ◽  
Vol 11 (6) ◽  
pp. 2673
Author(s):  
Mu-Hang Zhang ◽  
Xiao-Hong Shen ◽  
Lei He ◽  
Ke-Shi Zhang

Considering the relationship between inhomogeneous plastic deformation and fatigue damage, deformation inhomogeneity evolution and fatigue failure of superalloy GH4169 under temperature 500 °C and macro tension compression cyclic loading are studied, by using crystal plasticity calculation associated with polycrystalline representative Voronoi volume element (RVE). Different statistical standard deviation and differential entropy of meso strain are used to measure the inhomogeneity of deformation, and the relationship between the inhomogeneity and strain cycle is explored by cyclic numerical simulation. It is found from the research that the standard deviations of each component of the strain tensor at the cyclic peak increase monotonically with the cyclic loading, and they are similar to each other. The differential entropy of each component of the strain tensor also increases with the number of cycles, and the law is similar. On this basis, the critical values determined by statistical standard deviations of the strain components and the equivalent strain, and that by differential entropy of strain components, are, respectively, used as fatigue criteria, then predict the fatigue–life curves of the material. The predictions are verified with reference to the measured results, and their deviations are proved to be in a reasonable range.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document