Superharmonics-Free Adaptive Semiactive Magneto-Rheological Suspension

Author(s):  
Xubin Song ◽  
Mehdi Ahmadian ◽  
Steve Southfield ◽  
Lane Miller

This paper focuses on laboratory implementation of a semiactive seat suspension with application of magneto-rheological (MR) dampers. We firstly introduce the nonlinear dynamics phenomena induced with the skyhook control that is now widely applied from structural vibration suppression to commercialized vehicle suspensions. However, superharmonic dynamics has not been clearly addressed in such vibration control systems. This paper tries to explain how superharmonics are created with skyhook controls through testing data analysis. Furthermore, in order to avoid this dynamics issue, this study implements a nonlinear model-based adaptive control into this MR damper based seat suspension. Based on a nonparametric MR damper model, the adaptive algorithm is expanded mathematically, and the system stability is discussed. Then in the following sections, this paper describes implementation procedures such as modeling simplification and validation, and testing results. Through the laboratory testing, the adaptive suspension is compared to two passive suspensions: hard-damping (stiff) suspension with max current of 1A to the MR damper, and low-damping (soft) suspension with minimum of 0A, while broadband random excitations are applied with respect to the seat suspension resonant frequency in order to test the adaptability of the adaptive control. Furthermore, mass and spring rate are assumed known and unknown for this adaptive controller to investigate the capability of this algorithm with the simplified model, respectively. Finally the comparison of testing results is presented to show the effectiveness and feasibility of the proposed adaptive algorithm to eliminate the superharmonics from the MR seat suspension.

2007 ◽  
Vol 129 (6) ◽  
pp. 795-803 ◽  
Author(s):  
Xubin Song ◽  
Mehdi Ahmadian ◽  
Steve Southward

This paper focuses on an experimental implementation of a semiactive seat suspension using magnetorheological (MR) dampers. We first introduce the nonlinear dynamics phenomena induced by skyhook control. Skyhook control has been widely applied to applications ranging from structural vibration suppression to commercialized vehicle suspensions. Unfortunately, skyhook control generates superharmonic dynamics; yet, this issue has not been clearly addressed in such vibration control systems. This paper will attempt to explain how superharmonics are created with skyhook controls through analysis of test data. Furthermore, a nonlinear model-based adaptive control algorithm is developed and evaluated for reducing the negative impact of the superharmonics. Based on an empirical MR damper model, the adaptive algorithm is expanded mathematically, and the system stability is discussed. Then in the following sections, this paper describes implementation procedures such as modeling simplification and validation, and testing results. Through the laboratory testing, the adaptive suspension is compared to two passive suspensions: hard-damping (stiff) suspension with a maximum current of 1A to the MR damper and low-damping (soft) suspension with a low current of 0A, while broadband random excitations are applied with respect to the seat suspension resonant frequency in order to test the adaptability of the adaptive control. In two separate studies, both mass and spring rate are assumed known and unknown in order to investigate the capability of the adaptive algorithm with the simplified model. Finally, the comparison of test results is presented to show the effectiveness and feasibility of the proposed adaptive algorithm to eliminate the superharmonics from the MR seat suspension response.


Author(s):  
Xubin Song ◽  
Mehdi Ahmadian ◽  
Steve Southward ◽  
Lane Miller

This paper describes the details of the simulation analysis of a nonlinear model-based adaptive suspension control system[1, 2]. The numerical aspect of the simulation study of a seat suspension with application of magneto-rheological dampers will be presented. Magneto-rheological (MR) dampers have strong nonlinearities such as bi-linearity, hysteresis, and saturation related to magnetism, which can be represented by appropriate mathematic functions, respectively. Thus the model-based adaptive algorithm becomes complicated because of involvement of MR damper models. One objective of this study is to investigate the effect of MR damper model simplifications on the adaptive suspension performance. Furthermore, simulation is also applied to do parametric study of adaptive algorithm parameters such as filtering and step size. The simulation results compare the proposed adaptive controller with passive dampers to validate not only its effectiveness but also obtain some guidance information for its experimental implementation.


Author(s):  
Fan Yang ◽  
Ramin Sedaghati ◽  
Ebrahim Esmailzadeh

The structural vibration suppression using active and semi-active mass damper is investigated. The controller for full-active controlled mass dampers is designed using the H2/LQG method. Magneto-Rheological (MR) damper is used to design the semi-active controlled mass damper. The inverse MR-damper model is developed on the base of an improved LuGre friction model. It combined with the proposed H2/LQG controller to control the input current of the MR-damper to suppress the structural vibration efficiently. The illustrated examples are presented to compare the vibration suppression effectiveness of semi-active mass damper with MR-damper using the proposed controller with those reported in literatures in order to illustrate the validity of the proposed methodology.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Xiling Xie ◽  
Mingke Ren ◽  
Zhiyi Zhang

Abstract An adaptive method for suppressing mechanical vibration of multiple frequencies is investigated. The adaptive controller is reinforced with saturation alleviator to improve the convergence rate and performance of the adaptive algorithm. Tracking filters are used to extract harmonics of fluctuating frequencies and the anti-saturation unit works in series with the tracking filters to give constrained harmonic output. As a result, the controller is insensitive to abnormally large input that would otherwise induce saturation in actuators. A dynamic model is built for vibration suppression simulation and the numerical results indicate that the adaptive algorithm is effective in cases of multiple fluctuating frequencies and output saturation. Experiments were also conducted to test the performance of the adaptive method. Excitation with oscillating frequencies was applied, and the results have demonstrated that the harmonics can be suppressed effectively with the adaptive method.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zhijian Huang ◽  
Xinze Liu ◽  
Jiayi Wen ◽  
Guichen Zhang ◽  
Yihua Liu

The feedback PID method was mainly used for the navigating control of an unmanned surface vessel (USV). However, when the intelligent control era is coming now, the USV can be navigated more effectively. According to the USV character in its navigating control, this paper presents a parallel action-network ADHDP method. This method connects an adaptive controller parallel to the action network of the ADHDP. The adaptive controller adopts a RBF neural network approximation based on the Lyapunov stability analysis to ensure the system stability. The simulation results show that the parallel action-network ADHDP method has an adaptive control character and can navigate the USV more accurately and rapidly. In addition, this method can also eliminate the overshoot of the ADHDP controller when navigating the USV in various situations. Therefore, the adaptive stability design can greatly improve the navigating control and effectively overcome the ADHDP algorithm limitation. Thus, this adaptive control can be one of the intelligent ADHDP control methods. Furthermore, this method will be a foundation for the development of an intelligent USV controller.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jianfei Li ◽  
Yaobing Wang ◽  
Zhiyong Liu ◽  
Xin Jing ◽  
Chengwei Hu

In this paper, a new recursive implementation of composite adaptive control for robot manipulators is proposed. We investigate the recursive composite adaptive algorithm and prove the stability directly based on the Newton-Euler equations in matrix form, which, to our knowledge, is the first result on this point in the literature. The proposed algorithm has an amount of computation On, which is less than any existing similar algorithms and can satisfy the computation need of the complicated multidegree manipulators. The manipulator of the Chinese Space Station is employed as a simulation example, and the results verify the effectiveness of this proposed recursive algorithm.


2020 ◽  
Vol 7 ◽  
Author(s):  
Hongtao Zhu ◽  
Xiaoting Rui ◽  
Fufeng Yang ◽  
Wei Zhu ◽  
Junjie Gu

A cab seat suspension with a magneto-rheological (MR) fluid damper is introduced in this paper. A unified-format model for the MR damper is proposed to describe the dynamic characteristics of the MR damper. Also, a simple force-inverse model and a viscous damping tracking model are used for the coil current solution. A digital integrator and an extended Kalman filter are respectively adopted to obtain the vibration velocity of the chair frame and the relative motion velocity of the MR damper piston. A new skyhook control base with viscous damping tracking is applied to the semi-active seat suspension. In the simulation, compared with passive seat suspension under different displacement excitation (2, 4, 6, 8 Hz-sine, and random), the acceleration root mean square of the seat suspension with the MR damper is reduced by 52.2%, 32.2%, 41.3%, 50.8%, and 34.6%, respectively. In the experiment, the acceleration root mean square is reduced by 11.2%, 41.2%, 45.8%, and 31.5%, respectively under different displacement excitation (2, 4, 6, and 8 Hz-sine).


Sign in / Sign up

Export Citation Format

Share Document