Strength Enhancement of Styrene Acrylonitrile Co-Polymer via Delay Pack Injection Molding

Author(s):  
David C. Angstadt ◽  
John P. Coulter ◽  
Ryan Hydro

This study investigates the effects of processing of styrene acrylonitrile (SAN) by injection molding using a delayed packing stage. The concept of Delay Pack Injection Molding (DPIM) evolved from an in-situ study of vibration-assisted injection molding (VAIM) which indicated that the beneficial effects of VAIM came not from the vibration itself, but rather from the delay in the onset of packing resulting from the application of the vibration. Conceptually, DPIM involves normal filling of the mold immediately followed by a slight retraction of the injection screw for a specified time period before the final packing pressure is applied. Application of DPIM results in increased birefringence in the molded parts and increases in the ultimate tensile strength of molded parts very similar to the effects seen using VAIM. A parametric study using a design of experiments framework was carried out to determine the delay pack parameters affecting SAN and resulted in a maximum increase in UTS of 11.6%. Observation of birefringence patterns in Delay Pack processed samples shows a significant impact on molecular orientation while observation of failed specimens and their fracture surfaces shows distinctly different modes of crack growth and failure. Growth of craze cracks resulting from tensile loading appeared to be arrested by oriented areas surrounding the part core allowing the specimen to sustain higher loads relative to conventionally molded parts. All of the above observations are consistent with the observed effects of vibration-assisted injection molding.

Author(s):  
Ali Keshavarz Panahi ◽  
Hadi Miyanaji ◽  
Moein Taheri ◽  
Milad Janbakhsh

In this paper the processing steps for producing SOFC (Solid Oxide Fuel Cell) supports by means of PIM (Powder Injection Molding) technique were investigated. Injection molding parameters in this study were divided into pressure-related (injection pressure and packing pressure), temperature-related (nozzle temperature and mold temperature), and time-related (injection rate and holding time) parameters. Keeping the other parameters (pressure-related, temperature-related and time-related parameters) constant at an optimized value, the effects of each of the molding parameters above were investigated. The results show that the short shot, warpage, weld line and void are the most common defects in molded parts. According to the results the short shot could be seen in low values of injection pressure, injection rate, nozzle and mold temperature. Also, warpage could be seen in high values of mold temperature, injection and packing pressure. Poor weld line was another defect that could be seen in low values of injection pressure, injection rate, nozzle and mold temperature. Also the void was one of the most common defects that could be seen in high values of injection rate and nozzle temperatures. Finally, using optimized molding parameters, the molded parts underwent debinding and sintering processes. Based on the results of thermal shock tests and the porosity measurements of the sintered parts, these molded parts possessed relatively desirable characteristics.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3632
Author(s):  
Sylvain Badie ◽  
Rimy Gabriel ◽  
Doris Sebold ◽  
Robert Vaßen ◽  
Olivier Guillon ◽  
...  

Near-net shape components composed of monolithic Ti2AlC and composites thereof, containing up to 20 vol.% Al2O3 fibers, were fabricated by powder injection molding. Fibers were homogeneously dispersed and preferentially oriented, due to flow constriction and shear-induced velocity gradients. After a two-stage debinding procedure, the injection-molded parts were sintered by pressureless sintering at 1250 °C and 1400 °C under argon, leading to relative densities of up to 70% and 92%, respectively. In order to achieve near-complete densification, field assisted sintering technology/spark plasma sintering in a graphite powder bed was used, yielding final relative densities of up to 98.6% and 97.2% for monolithic and composite parts, respectively. While the monolithic parts shrank isotropically, composite assemblies underwent anisotropic densification due to constrained sintering, on account of the ceramic fibers and their specific orientation. No significant increase, either in hardness or in toughness, upon the incorporation of Al2O3 fibers was observed. The 20 vol.% Al2O3 fiber-reinforced specimen accommodated deformation by producing neat and well-defined pyramidal indents at every load up to a 30 kgf (~294 N).


2017 ◽  
Vol 37 (5) ◽  
pp. 505-520 ◽  
Author(s):  
Wen-Ren Jong ◽  
Shyh-Shin Hwang ◽  
Ming-Chieh Tsai ◽  
Chien-Chou Wu ◽  
Chi-Hung Kao ◽  
...  

Abstract Plastic products are common in contemporary daily lives. In the plastics industry, the injection molding process is advantageous for features such as mass production and stable quality. The problem, however, is that the melt will be affected by the residual stress and shrinkage generated in the process of filling and cooling; hence, defects such as warping, deformation, and sink marks will occur. In order to reduce product deformation and shrinkage during the process of molding, the screw of the injection molding machine will start the packing stage when filling is completed, which continuously pushes the melt into the cavity, thus making up for product shrinkage and improving their appearance, quality, and strength. If the packing pressure is too high, however, the internal residual stress will increase accordingly. This study set out to apply gas counter pressure (GCP) in the injection molding process. By importing gas through the ends of the cavity, the melt was exposed to a melt front pressure, which, together with the packing pressure from the screw, is supposed to reduce product shrinkage. The aim was to investigate the impacts of GCP on the process parameters via the changes in machine feedback data, such as pressure and the remaining injection resin. This study also used a relatively thin plate-shaped product and measurements, such as the photoelastic effect and luminance meter, to probe into the impacts of GCP on product residual stress, while a relatively thick paper-clip-shaped product was used to see the impacts of GCP on shrinkage in thick parts. According to the experimental results, the addition of GCP resulted in increased filling volume, improvement of product weight and stability, and effective reduction of section shrinkage, which was most obvious at the point closest to the gas entrance. The shrinkage of the sections parallel and vertical to the flow direction was proved to be reduced by 32% and 16%, respectively. Moreover, observations made via the polarizing stress viewer and luminance meter showed that the internal residual stress of a product could be effectively reduced by a proper amount of GCP.


2016 ◽  
Vol 36 (8) ◽  
pp. 861-866 ◽  
Author(s):  
Quan Wang ◽  
Zhenghuan Wu

Abstract This paper presents a study of the characteristics of axial vibration of a screw in the filling process for a novel dynamic injection molding machine. By simplifying a generalized model of the injection screw, physical and mathematic models are established to describe the dynamic response of the axial vibration of a screw using the method of lumped-mass. The damping coefficient of the screw is calculated in the dynamic filling process. The amplitude-frequency characteristics are analyzed by the simulation and experimental test of polypropylene. The results show that the amplitude of a dynamic injection molding machine is not only is related to structure parameters of the screw and performance of the material, such as non-Newtonian index, but also depends on the processing parameters, such as vibration intensity and injection speed.


2006 ◽  
Vol 505-507 ◽  
pp. 229-234 ◽  
Author(s):  
Yung Kang Shen ◽  
H.J. Chang ◽  
C.T. Lin

The purpose of this paper presents the optical properties of microstructure of lightguiding plate for micro injection molding (MIM) and micro injection-compression molding (MICM). The lightguiding plate is applied on LCD of two inch of digital camera. Its radius of microstructure is from 100μm to 300μm by linearity expansion. The material of lightguiding plate uses the PMMA plastic. This paper uses the luminance distribution to make a comparison between MIM and MICM for the optical properties of lightguiding plate. The important parameters of process for optical properties are the mold temperature, melt temperature and packing pressure in micro injection molding. The important parameters of process for optical properties are the compression distance, mold temperature and compression speed in micro injection-compression molding. The process of micro injection-compression molding is better than micro injection molding for optical properties.


Synlett ◽  
2021 ◽  
Author(s):  
Nana Kim ◽  
Van T. Tran ◽  
Omar Apolinar ◽  
Steven Wisniewski ◽  
Martin Eastgate ◽  
...  

Electron-deficient olefin (EDO) ligands are known to promote a variety of nickel-catalyzed cross-coupling reactions, presumably by accelerating the reductive elimination step and preventing undesired β-hydride elimination. While there is a growing body of experimental and computational evidence elucidating the beneficial effects of EDO ligands, significant gaps remain in our understanding of the underlying coordination chemistry of the Ni–EDO species involved. In particular, most procedures rely on in situ assembly of the active catalyst, and there is a paucity of pre-ligated Ni-EDO precatalysts. Herein, we investigate the 16-electron, heteroleptic nickel complex, Ni(COD)(DMFU), and examine the performance of this complex as a precatalyst in 1,2-diarylation of alkenes.


Author(s):  
Kurt Beiter ◽  
Kosuke Ishii ◽  
Lee Hornberger

Abstract This paper describes the development of geometry-based indices that predict sink mark depth in injection molded parts. Plastic part designers need such indices to incorporate manufacturability concerns at the conceptual stage of design. These indices apply to several form features so engineers do not have to check different design rules for each geometry element. First, we propose a geometry-based sink index that can be used to predict sink mark depth as a function of process conditions such as packing pressure. Next, we explain how this relationship is identified through experiments. We also describe HyperDesign/Plastics, a Macintosh-based design aid that incorporates the sink index.


Author(s):  
Sornkrit Leartcheongchowasak ◽  
Merwan Mehta ◽  
Hamid Al-Kadi ◽  
Keith Sequeira ◽  
Brian Snow ◽  
...  

Abstract The most important problem, causing defective parts, in the injection molding process, is nonuniform shrinkage of molded parts. This leads to an iterative trial-and-error cycles of modification of mold cavity and core to arrive at the right dimensional size required which can occasionally to complete retooling. For this process, there are many factors that can be thrown out of control. Using the traditional scientific approach, engineers have longed to understand the mechanics of the process to control it, with limited success. In this paper, a design of experiments setup, using the Taguchi Methods, was done to reduce the nonuniform shrinkage. The company where the experiment was carried out is a precision parts molder for their own product lines. By using the internal experts from the company, a list of independent process parameters with no interactions which were thought the most responsible for dimensional size were listed. As there were 13 such parameters, it was decided to use the L27 orthogonal array. The optimum value that the company experts thought would produce the right part were used as the settings for the initial experiment. The 27 experiments were then performed, allowing sufficient time to let the machine stabilized between the experiments. The S/N ratio calculation for 27 experiments was explained. Next the calculations for the percentage that each parameter contributes to the dimension was determined. Finally, a confirmation experiment was performed to verify the results.


2016 ◽  
Vol 9 (8) ◽  
pp. 3911-3919 ◽  
Author(s):  
Franz-Josef Lübken ◽  
Gerd Baumgarten ◽  
Jens Hildebrand ◽  
Francis J. Schmidlin

Abstract. We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target (“starute”) by a tracking radar. The launches took place from the Andøya Space Center (ASC), very close to the ALOMAR observatory (Arctic Lidar Observatory for Middle Atmosphere Research) at 69° N. DoRIS is part of a steerable twin lidar system installed at ALOMAR. The observations were made simultaneously and with a horizontal distance between the two lidar beams and the starute trajectories of typically 0–40 km only. DoRIS measured winds from 14 March 2015, 17:00 UTC, to 15 March 2015, 11:30 UTC. A total of eight starute flights were launched successfully from 14 March, 19:00 UTC, to 15 March, 00:19 UTC. In general there is excellent agreement between DoRIS and the in situ measurements, considering the combined range of uncertainties. This concerns not only the general height structures of zonal and meridional winds and their temporal developments, but also some wavy structures. Considering the comparison between all starute flights and all DoRIS observations in a time period of ±20 min around each individual starute flight, we arrive at mean differences of typically ±5–10 m s−1 for both wind components. Part of the remaining differences are most likely due to the detection of different wave fronts of gravity waves. There is no systematic difference between DoRIS and the in situ observations above 30 km. Below ∼ 30 km, winds from DoRIS are systematically too large by up to 10–20 m s−1, which can be explained by the presence of aerosols. This is proven by deriving the backscatter ratios at two different wavelengths. These ratios are larger than unity, which is an indication of the presence of aerosols.


2018 ◽  
Vol 62 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Dániel Török ◽  
József Gábor Kovács

In all fields of industry it is important to produce parts with good quality. Injection molded parts usually have to meet strict requirements technically and aesthetically. The aim of the measurements presented in our paper is to investigate the aesthetic appearance, such as surface color homogeneity, of injection molded parts. It depends on several factors, the raw material, the colorants, the injection molding machine and the processing parameters. In this project we investigated the effects of the injection molding machine on surface color homogeneity. We focused on injection molding screw tips and investigated five screw tips with different geometries. We produced flat specimens colored with a masterbatch and investigated color homogeneity. To evaluate the color homogeneity of the specimens, we used digital image analysis software developed by us. After that we measured the plastication rate and the melt temperature of the polymer melt because mixing depends on these factors. Our results showed that the screw tips (dynamic mixers) can improve surface color homogeneity but they cause an increase in melt temperature and a decrease in the plastication rate.


Sign in / Sign up

Export Citation Format

Share Document