Design and Testing of a Prototype Atmospheric Gas Collection Apparatus for a Mission to Mars

Aerospace ◽  
2006 ◽  
Author(s):  
John D. Bernardin ◽  
Snezana Konecni ◽  
Roger Wiens

A novel spacecraft, the Sample Collection for Investigation of Mars (SCIM), was proposed for the collection and return of atmospheric gas and dust samples from the martian atmosphere. The SCIM mission, part of NASA's Mars Exploration Strategy, would allow scientists to greatly enhance our understanding of Mars' water, climate, and geological evolution by studying the element and isotopic composition of the gas and dust. The SCIM spacecraft was proposed to collect its samples during a single high-speed pass through the martian atmosphere at an altitude of 37 km and return the samples back to earth. For the atmospheric gas sampling aspect the SCIM employs the Atmospheric Collection Experiment (ACE), a dual-component apparatus consisting of a passive and a cryogenic sorption gas collection system. Each of these systems possesses a collection vessel that is initially under high vacuum. At the time of entry into the martian atmosphere, valves on SCIM open and gas flows into the parallel-plumbed passive and cryogenic sorption gas collection systems. The passive system simply allows the incoming gas to fill an initially evacuated 1 Liter vessel. The cryogenic sorption system employs a Joule-Thompson cryocooler and sorption medium that initially condenses and captures the incoming gas. As the SCIM begins to exit the atmosphere isolation valves close and trap the gas samples in their collection systems for the return journey back to earth. The minimum SCIM mission goal was to collect 100 cm3 @STP(≈ 0.2 g) of martian atmospheric gas and the ACE was being designed to gather 1000 cm3 @STP (≈ 2.0 g) using both the passive and cryogenic systems. The volumes referred to above correspond to standard temperature and pressure on Earth (e.g., STP). The goals of this study were to prove the gas collection concepts mentioned above and develop the numerical and experimental tools to allow for the optimization of a flight worthy ACE. This paper discusses the design, analysis, and testing of a prototype ACE. First, more specific details on the design and testing methodology for the prototype are presented. Next, the development of a computational fluid dynamics (CFD) model is discussed. Finally, empirical pressure data from the prototype tests are used to assess the performances of the passive and cryogenic sorption gas collection systems and are compared to numerical pressure predictions to provide a benchmark for the CFD model. Results indicate that the prototype ACE is capable of meeting the design goal of 1000 cm3 @STP (2.0 g) of total gas collection.

Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 466
Author(s):  
Aimable Kalume ◽  
Chuji Wang ◽  
Yongle Pan

We present a broad assessment on the studies of optically-trapped single airborne aerosol particles, particularly chemical aerosol particles, using laser technologies. To date, extensive works have been conducted on ensembles of aerosols as well as on their analogous bulk samples, and a decent general description of airborne particles has been drawn and accepted. However, substantial discrepancies between observed and expected aerosols behavior have been reported. To fill this gap, single-particle investigation has proved to be a unique intersection leading to a clear representation of microproperties and size-dependent comportment affecting the overall aerosol behavior, under various environmental conditions. In order to achieve this objective, optical-trapping technologies allow holding and manipulating a single aerosol particle, while offering significant advantages such as contactless handling, free from sample collection and preparation, prevention of contamination, versatility to any type of aerosol, and flexibility to accommodation of various analytical systems. We review spectroscopic methods that are based on the light-particle interaction, including elastic light scattering, light absorption (cavity ring-down and photoacoustic spectroscopies), inelastic light scattering and emission (Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopies), and digital holography. Laser technologies offer several benefits such as high speed, high selectivity, high accuracy, and the ability to perform in real-time, in situ. This review, in particular, discusses each method, highlights the advantages and limitations, early breakthroughs, and recent progresses that have contributed to a better understanding of single particles and particle ensembles in general.


Author(s):  
Yuanxin Zhou ◽  
Shaik Jeelani

In this study, a high-intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and carbon nano fiber. The carbon nano fibers were infused into the part A of SC-15 (diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high-speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Nanophased epoxy with 2 wt.% CNF was then utilized in a vacuum assisted resin transfer molding (VARTM) set up with carbon fabric to fabricate laminated composites. The effectiveness of CNF addition on matrix dominated properties of composites has been evaluated by compression, open hole compression and inter-laminar shear. The compression strength, open hole compression strength and ILS were improved by 21%, 23% and 15%, respectively as compared to the neat composite.


1971 ◽  
Vol 55 (1) ◽  
pp. 13-38 ◽  
Author(s):  
C. J. PENNYCUICK

1. Glide-comparison measurements were made on ten species of East African soaring birds using a Schleicher ASK-14 powered sailplane. Horizontal and vertical speed differences between bird and glider were measured by a photographic method, and used to estimate the bird's horizontal and vertical speeds relative to the air. The analysis refers to the white-backed vulture, since by far the largest number of measurements was obtained on this species. 2. A regression analysis using a two-term approximation to the glide polar yielded an implausibly high estimate of induced drag, which was attributed to a lack of observations at lift coefficients above 0.72. An amended glide polar was constructed assuming elliptical lift distribution and a maximum lift coefficient of 1.6 to define the low-speed end, while the high-speed end was made to pass through the mean horizontal and sinking speeds of all the experimental points. This curve gave a minimum sinking speed of 0.76 m/s at a forward speed of 10 m/s, and a best glide ratio of 15.3:1 at 13 m/s. It did not differ significantly (in the statistical sense) from the original regression curve. 3. In comparing the estimated circling performance, based on the amended glide polar, with that of the ASK-14, it was concluded that the rates of sink of both should be comparable, but that the glider would require thermals with radii about 4.3 times as great as those needed to sustain the birds. The conclusions are consistent with experience of soaring in company with birds. 4. In an attempt to assess the adaptive significance of the low-aspect-ratio wings of birds specializing in thermal soaring, the white-backed vulture's circling performance was compared with that of an ‘albatross-shaped vulture’, an imaginary creature having the same mass as a white-backed vulture, combined with the body proportions of a wandering albatross. It appears that the real white-back would be at an advantage when trying to remain airborne in thermals with radii between 14 and 17 m, but that the albatross-shaped vulture would climb faster in all wider thermals; on account of its much better maximum glide ratio, it should also achieve higher cross-country speeds. It is concluded that the wing shape seen in vultures and storks is not an adaptation to thermal soaring as such, but is more probably a compromise dictated by take-off and landing requirements. 5. The doubts recently expressed by Tucker & Parrott (1970) about the results and conclusions of Raspet (1950a, b; 1960) are re-inforced by the present experience.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


Author(s):  
Tatiana Drozdenko ◽  
Sergei Mikhalap ◽  
Larisa Nikolskaya ◽  
Anna Chernova

The basis of the existence of freshwater ecosystems is phytoplankton, which produces most of the primary biological production, participates in repair processes and provides a wide range of ecosystem services. The short life cycle and high speed metabolism of microalgae make them ideal objects for ecological monitoring. The aim of the present study is to research the ecological state of the Velikaya river delta based on the species composition of phytoplankton community and some hydrochemical parameters. The sample collection for phytoplankton study and physicochemical measurements was carried out in summer 2016 at five stations representing different ecological locations of the Velikaya river delta. One hundred sixty five species taxa of microalgae belonging to 8 phylums were identified during the research: Bacillariophyta (37%), Chlorophyta (33.9%), Cyanophyta/Cyanobacteria (9.7%), Chrysophyta (6.1%), Euglenophyta (6.1%), Cryptophyta (3%), Dinophyta (3%), Xanthophyta (1.2%). The values of Shannon index indicate the average complexity of the microalgae communities structure. Values of Margalef index characterize the Velikaya river delta as an area of high species richness. Compared to the previous studies, a significant increase in the level of information diversity is observed, indicating an increase in the number of possible flows of substance and energy in the ecosystem. Dynamics of biogen substances in the water shows a slight increase of their concentrations. Ecological and geographical analysis proves that absolute dominance of cosmopolitan freshwater forms is typical for the algoflora of the Velikaya river delta. In relation to the pH-reaction inhabitants of neutral and slightly alkaline water dominate. Pantle–Buck saprobity index is applied for water quality assessment, which shows beta-mesosaprobic water quality in the ecosystem. Thus, the water of the Velikaya river delta could be referred to the category of moderately polluted water (class II of water quality). This is confirmed by the data of hydrochemical analysis.


2019 ◽  
Vol 5 (3) ◽  
pp. 36-44
Author(s):  
Viktor A. Bogachev ◽  
Yuri A. Terentyev ◽  
Viktor V. Koledov ◽  
Taras V. Bogachev

Background: Research is ongoing relating to the analysis of a set of issues that arise in connection with the creation of the operating on the basis of vacuum magnetic technologies a transcontinental high-speed land transport corridor, connecting the eastern regions of China with Russia. As part of the variation calculus task, the geopolitical, economic, social, logistic, geographic, geomorphological, seismological, topographic components of the project are considered, in which it is assumed that the high speed overland route will pass through the north-western part of the historical region of Dzungaria. Aim: Find the most optimal from the point of view of the above components the location of the most important section of high speed overland route passing through Central Asia. Methods: Variational methods for solving an optimization problem with the use of a computer math system. Results: After creating a fairly informative and versatile picture of the region in question, the foundations of the corresponding mathematical models are built. Conclusion: The New Dzungarian Gates is a key element in choosing the location of a high-speed overland route based on VMLT.


Author(s):  
Yavor Yordanov ◽  

In this study we will investigate an interesting collective behavior of candles. It has been observed that when several candles burn close to each other they form a common flame that exhibits oscillations in size and brightness. If two such oscillators burn together, they interact and the oscillations of the resultant system depend on the distance between them. The aim of this investigation, inspired by Problem 5 of the International Young Physicists Tournament in 2021, is to theoretically explain the phenomenon through overlapping of hot gas flows and radiation, as well as to check our understanding and measure additional parameters experimentally using advanced techniques, such as high speed schlieren photography.


Sign in / Sign up

Export Citation Format

Share Document