Finite Element Modeling of Tire With Validation Using Tensile and Frequency Response Testing

Author(s):  
Jennifer M. Bastiaan ◽  
Amir Khajepour

A physical testing program is performed in support of finite element model creation for a 50-series passenger car tire. ABAQUS finite element analysis software is used along with its standard material models. Uniaxial tension testing of tire samples cut from the tread composite, tread rubber and sidewall composite is performed in order to obtain material properties. Hyper-elastic material coefficients for tread rubber are fit using uniaxial tension test data. Results show that the Arruda-Boyce hyper-elastic material model fits the test data well and it predicts reasonable overall behavior in uniaxial tension and uniaxial compression. Most other hyperelastic material models are found to predict unrealistic behavior in uniaxial compression for the tire samples, especially in the 0 to 20% compressive strain range. Frequency response testing of two inflated passenger car tires of different sizes, makes and models is also performed to assist in defining the viscoelastic material model for tread rubber. Test results show that tire modal damping is in the 2 to 4% range for most modes below 200 Hz, and the response curves, modal density and modal damping are remarkably similar for the two tires tested. The tire finite element model with updated material properties is simulated for nine combinations of air inflation pressure and vertical load in order to calculate static loaded radius. The analysis results are compared with physical test results and the analysis results are found to deviate at most by 3% compared to the tests.

2014 ◽  
Vol 611 ◽  
pp. 188-193 ◽  
Author(s):  
Vladimír Ivančo ◽  
Gabriel Fedorko ◽  
Ladislav Novotný

In the paper, the influence of material model selection on the behaviour of Finite Element model of a compressed thin-walled channel is studied. Results of three material models of channels of two different lengths and two types of geometric imperfections are compared and discussed.


1996 ◽  
Vol 118 (4) ◽  
pp. 503-508 ◽  
Author(s):  
G. E. Vallee ◽  
Arun Shukla

A numerical method is described for determining a dynamic finite element material model for elastomeric materials loaded primarily in compression. The method employs data obtained using the Split Hopkinson Pressure Bar (SHPB) technique to define a molecular constitutive model for elastomers. The molecular theory is then used to predict dynamic material behavior in several additional deformation modes used by the ABAQUS/Explicit (Hibbitt, Karlsson, and Sorenson, 1993a) commercial finite element program to define hyperelastic material behavior. The resulting dynamic material models are used to create a finite element model of the SHPB system, yielding insights into both the accuracy of the material models and the SHPB technique itself when used to determine the dynamic behavior of elastomeric materials. Impact loading of larger elastomeric specimens whose size prohibits examination by the SHPB technique are examined and compared to the results of dynamic load-deflection experiments to further verify the dynamic material models.


2021 ◽  
Vol 347 ◽  
pp. 00029
Author(s):  
John D. Van Tonder ◽  
Martin P. Venter ◽  
Gerhard Venter

A theoretical testing method for fully characterising the Mooney-Rivlin hyper-elastic material model is proposed by capturing full-field data, namely displacement field and indentation force data. A finite element model with known parameters will act as the experimental model against which all data will be referenced. This paper proposes a method of inverse finite element analysis operating under the assumption of equally objective function optimal planes or “hyper-planes”. The paper concludes that the Mooney-Rivlin material model can theoretically be fully characterised in a single indentation test by applying methods discussed in the paper when using full-field data operating under the assumption of hyper-planes.


2013 ◽  
Vol 421 ◽  
pp. 177-180 ◽  
Author(s):  
Jian Hua Zhao ◽  
De Bin Zhu ◽  
Rui Bo Zhang

Rubber CVJ boot is the important part of the car transmission system. Trough crack and surface wear of the CVJ boot are the common failure modes, so the stress distribution simulation of the boot is needed. Acoording to the Mooney-Rivlin model, the definite method of the coefficient for material model was obtained. Based on the software Abaqus, a nonlinear finite element model of CVJ boot was set up. The elements type was hybrid (mixed formulation) C3D4H. The deformation and strength of the boot under working condition were computed. The maximum stress is 11490MPa, located in the first trough and the contact surface of the 3rd and the 2nd crest have more serious wear, which correlate well with the test results. The next work is to optimize boot structure by this simulation model.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 61-66 ◽  
Author(s):  
DOEUNG D. CHOI ◽  
SERGIY A. LAVRYKOV ◽  
BANDARU V. RAMARAO

Delamination between layers occurs during the creasing and subsequent folding of paperboard. Delamination is necessary to provide some stiffness properties, but excessive or uncontrolled delamination can weaken the fold, and therefore needs to be controlled. An understanding of the mechanics of delamination is predicated upon the availability of reliable and properly calibrated simulation tools to predict experimental observations. This paper describes a finite element simulation of paper mechanics applied to the scoring and folding of multi-ply carton board. Our goal was to provide an understanding of the mechanics of these operations and the proper models of elastic and plastic behavior of the material that enable us to simulate the deformation and delamination behavior. Our material model accounted for plasticity and sheet anisotropy in the in-plane and z-direction (ZD) dimensions. We used different ZD stress-strain curves during loading and unloading. Material parameters for in-plane deformation were obtained by fitting uniaxial stress-strain data to Ramberg-Osgood plasticity models and the ZD deformation was modeled using a modified power law. Two-dimensional strain fields resulting from loading board typical of a scoring operation were calculated. The strain field was symmetric in the initial stages, but increasing deformation led to asymmetry and heterogeneity. These regions were precursors to delamination and failure. Delamination of the layers occurred in regions of significant shear strain and resulted primarily from the development of large plastic strains. The model predictions were confirmed by experimental observation of the local strain fields using visual microscopy and linear image strain analysis. The finite element model predicted sheet delamination matching the patterns and effects that were observed in experiments.


2021 ◽  
Vol 8 (3) ◽  
pp. 32
Author(s):  
Dimitrios P. Sokolis

Multiaxial testing of the small intestinal wall is critical for understanding its biomechanical properties and defining material models, but limited data and material models are available. The aim of the present study was to develop a microstructure-based material model for the small intestine and test whether there was a significant variation in the passive biomechanical properties along the length of the organ. Rat tissue was cut into eight segments that underwent inflation/extension testing, and their nonlinearly hyper-elastic and anisotropic response was characterized by a fiber-reinforced model. Extensive parametric analysis showed a non-significant contribution to the model of the isotropic matrix and circumferential-fiber family, leading also to severe over-parameterization. Such issues were not apparent with the reduced neo-Hookean and (axial and diagonal)-fiber family model, that provided equally accurate fitting results. Absence from the model of either the axial or diagonal-fiber families led to ill representations of the force- and pressure-diameter data, respectively. The primary direction of anisotropy, designated by the estimated orientation angle of diagonal-fiber families, was about 35° to the axial direction, corroborating prior microscopic observations of submucosal collagen-fiber orientation. The estimated model parameters varied across and within the duodenum, jejunum, and ileum, corroborating histologically assessed segmental differences in layer thicknesses.


2011 ◽  
Vol 243-249 ◽  
pp. 1528-1535
Author(s):  
Yu Zhao ◽  
Yong Jun Zhou ◽  
Jing Sun ◽  
Jin Tao Tang ◽  
Xu Li

Cable-stayed self-anchored suspension composed bridges have novel structures and aesthetic appearance with complex system and difficulty for design and construction. In order to acquire a better knowledge of the load-carrying capability of this type of bridges, based on a real bridge and the theory of abnormal similarity, a full-bridge scaled down(1:20) test model was built to simulate the whole process of construction. The test results were preferably fit the theoretical calculation value. It can be seen that the design of the bridge was reasonable, and the accuracy of the calculation of finite element model was verified at the same time. The test and the related results can be used as the reference for the test and design of the similar bridges.


2006 ◽  
Vol 129 (1) ◽  
pp. 58-65 ◽  
Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy ◽  
Douglas E. Smith

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. To this end, a robust ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is developed and linked with finite element code. Comparisons of this novel method with conventional means are carried out to demonstrate the advantages of this approach.


2021 ◽  
Author(s):  
Zwelihle Ndlovu ◽  
Dawood Desai ◽  
Thanyani Pandelani ◽  
Harry Ngwangwa ◽  
Fulufhelo Nemavhola

This study assesses the modelling capabilities of four constitutive hyperplastic material models to fit the experimental data of the porcine sclera soft tissue. It further estimates the material parameters and discusses their applicability to a finite element model by examining the statistical dispersion measured through the standard deviation. Fifteen sclera tissues were harvested from porcine’ slaughtered at an abattoir and were subjected to equi-biaxial testing. The results show that all the four material models yielded very good correlations at correlations above 96 %. The polynomial (anisotropic) model gave the best correlation of 98 %. However, the estimated material parameters varied widely from one test to another such that there would be needed to normalise the test data to avoid long optimisation processes after applying the average material parameters to finite element models. However, for application of the estimated material parameters to finite element models, there would be needed to consider normalising the test data to reduce the search region for the optimisation algorithms. Although the polynomial (anisotropic) model yielded the best correlation, it was found that the Choi-Vito had the least variation in the estimated material parameters thereby making it an easier option for application of its material parameters to a finite element model and also requiring minimum effort in the optimisation procedure. For the porcine sclera tissue, it was found that the anisotropy more influenced by the fiber-related properties than the background material matrix related properties.


Sign in / Sign up

Export Citation Format

Share Document