scholarly journals Using Full Field Data to Produce a Single Indentation Test for Fully Characterising the Mooney-Rivlin Material Model

2021 ◽  
Vol 347 ◽  
pp. 00029
Author(s):  
John D. Van Tonder ◽  
Martin P. Venter ◽  
Gerhard Venter

A theoretical testing method for fully characterising the Mooney-Rivlin hyper-elastic material model is proposed by capturing full-field data, namely displacement field and indentation force data. A finite element model with known parameters will act as the experimental model against which all data will be referenced. This paper proposes a method of inverse finite element analysis operating under the assumption of equally objective function optimal planes or “hyper-planes”. The paper concludes that the Mooney-Rivlin material model can theoretically be fully characterised in a single indentation test by applying methods discussed in the paper when using full-field data operating under the assumption of hyper-planes.

Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. In the present work, a previously developed ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is incorporated with finite element code. Utilizing this linked approach, a preliminary model for forging an aluminum wheel is developed. This novel method, along with a conventional approach, is then measured against the forging process as it is currently performed in actual production.


2011 ◽  
Vol 243-249 ◽  
pp. 527-530 ◽  
Author(s):  
Wen Da Wang ◽  
Zhi Feng Guo ◽  
Yan Li Shi

The steel tube confined concrete (STCC) column exhibits excellent mechanical performance. A 3-D finite element model (FEM) using ABAQUS was established to simulate the performance of the composite joints with STCC column and RC beam. Accurate material model, rational element type, and solution method were discussed. Some STCC columns and composite joints with concrete-filled steel tubular (CFST) column and STCC column were modeled based on the model, respectively. The results from FEM are good agreement with the test results. The mechanism of the composite joint was investigated based on the FEM.


Author(s):  
Prabin Pathak ◽  
Y. X. Zhang

A simple, accurate and efficient finite element model is developed in ANSYS for numerical modelling of the nonlinear structural behavior of FRP strengthened RC beams under static loading in this paper. Geometric nonlinearity and material non-linear properties of concrete and steel rebar are accounted for this model. Concrete and steel reinforcement are modelled using Solid 65 element and Link 180 element, and FRP and adhesive are modelled using Shell 181element and Solid 45 element. Concrete is modelled using Nitereka and Neal’s model for compression, and isotropic and linear elastic model before cracking with strength gradually reducing to zero after cracking for tension. For steel reinforcement, the elastic perfectly plastic material model is used. FRPs are assumed to be linearly elastic until rupture and epoxy is assumed to be linearly elastic. The new FE model is validated by comparing the computed results with those obtained from experimental studies.


Author(s):  
K W Dalgarno ◽  
A J Day ◽  
T H C Childs

This paper describes a finite element analysis of a synchronous belt tooth under operational loads and conditions with the objective of obtaining a greater understanding of belt failure by tooth root cracking through an examination of the strains within the facing fabric in the belt. The analysis used the ABAQUS finite element program, and was based on a two-dimensional finite element model incorporating a hyperelastic material model for the elastomer compound. Contact between the belt tooth face and the pulley groove was modelled using surface interface elements which allowed only compression and shear forces at the contact surfaces. It is concluded that the critical strains in the facing fabric of the belt, and therefore the belt life, are largely determined by the tangential loading condition on the belt teeth.


Author(s):  
Hao Gong ◽  
Jianhua Liu

Finite element analysis has been regarded as an effective research method for analyzing the loosening failure of bolted joints under vibration. However, there exist some factors, which influence the accuracy and reliability of loosening results, thus determining the explanations of the loosening mechanism. In this study, a 3D finite element model of a typical bolted joint was built to investigate the effects of several different factors on the loosening under transverse vibration loading. These influencing factors include preload generation, vibration parameter, and material model. Based on the simulation results, it was found that applying the method of pretension element to generate preload instead of the actual method of torque was reliable and efficient. For the vibration parameter, it showed that the decrease rate in preload was higher for a larger vibration amplitude. But once the bearing surface reached complete slip, the loosening rate would keep constant. This was because the thread surface at that time reached a sticking state. Vibration frequency was proved to have no effect on the loosening behavior. This result demonstrated that the quasi-static assumption for vibration frequency was reasonable. Additionally, it also indicated that plastic material models only affected the preload loss in the initial several vibration cycles and had no influence on the loosening rate of preload after several vibration cycles. Finally, experiments were conducted to confirm qualitatively the results obtained based on finite element analysis.


Author(s):  
Jennifer M. Bastiaan ◽  
Amir Khajepour

A physical testing program is performed in support of finite element model creation for a 50-series passenger car tire. ABAQUS finite element analysis software is used along with its standard material models. Uniaxial tension testing of tire samples cut from the tread composite, tread rubber and sidewall composite is performed in order to obtain material properties. Hyper-elastic material coefficients for tread rubber are fit using uniaxial tension test data. Results show that the Arruda-Boyce hyper-elastic material model fits the test data well and it predicts reasonable overall behavior in uniaxial tension and uniaxial compression. Most other hyperelastic material models are found to predict unrealistic behavior in uniaxial compression for the tire samples, especially in the 0 to 20% compressive strain range. Frequency response testing of two inflated passenger car tires of different sizes, makes and models is also performed to assist in defining the viscoelastic material model for tread rubber. Test results show that tire modal damping is in the 2 to 4% range for most modes below 200 Hz, and the response curves, modal density and modal damping are remarkably similar for the two tires tested. The tire finite element model with updated material properties is simulated for nine combinations of air inflation pressure and vertical load in order to calculate static loaded radius. The analysis results are compared with physical test results and the analysis results are found to deviate at most by 3% compared to the tests.


Author(s):  
Kristin Myers ◽  
Wang Yao ◽  
Kyoko Yoshida ◽  
Joy Vink ◽  
Noelia Zork ◽  
...  

The mechanical function of the cervix is crucial during pregnancy when it is required to resist the compressive and tensile forces generated from the growing fetus. Pathologies of the cervical extracellular matrix (ECM), premature cervical remodeling, and alterations of cervical material properties have been implicated in placing women at high-risk for preterm birth (PTB). To understand the mechanical role of the cervix during pregnancy and to potentially identify etiologies for PTB, the overall goal of our group is to quantify ECM-material property relationships in normal and diseased human cervical tissue. In this study we present an inverse finite element analysis (IFEA) that optimizes material parameters of a viscoelastic material model to fit the stress-relaxation response of excised tissue slices to spherical indentation. Here we detail our IFEA methodology, report viscoelastic material parameters for cervical tissue slices from nonpregnant (NP) and pregnant (PG) hysterectomy patients, and report slice-by-slice data for whole cervical tissue specimens.


2021 ◽  
Author(s):  
Randall Heydon

The knee joint is often subjected to high loads, which can lead to injury and osteoarthritis. To better understand its behaviour, a finite element model of the joint was created. A hyperelastic material model was created to represent articular cartilage. A six parameter Ogden curve was fiitted against experimental stress-stretch data of cartilage. This material was applied to two different finite element models of the knee created from anatomical slice images. The complete models were validated against data from experiments performed on whole knees. Under compressive loading, the deflection of the model joints were found to be within one-half of a standard deviation of the experimental data. One model was tested in alternate configurations; its response was found to be strongly related to cartilage thickness and knee flexion. Therefore, it is concluded that this cartilage material model can be used to accurately predict the load response of knees.


2017 ◽  
Vol 889 ◽  
pp. 3-8
Author(s):  
Krirkkajon Tanadrob ◽  
Chakrit Suvanjumrat

Composite material referred to build speed boats with a lightweight and also endured to support a crushing load. To design and analyze speed boats to support a collision accident, the composite material would be implemented into finite element model. This research had proposed the material model of a fiberglass composite material which used to construct speed boats in Pattaya, Thailand. The rectangular plate of composite material was analyzed according to the drop weight impact test. The orthotropic and isotropic material models were applied to define material properties of the finite element model of the fiberglass plate. The finite element analysis (FEA) results were compared with experimental data. The FEA with isotropic material for modeling the fiberglass material results were in good agreement with experiment. There was an average difference of 0.4195 J when compared the residual energy with the experimental data. Consequently, this fiberglass material model would be used to analyze the speed boat collision in a further work.


Sign in / Sign up

Export Citation Format

Share Document