A Discrete Model for an Electrostatically Driven Micro-Hydraulic Actuator

Author(s):  
Behrouz Shiari ◽  
Mahdi M. Sadeghi ◽  
Ali Darvishian ◽  
Khalil Najafi

High-force, large-deflection actuators are critical for devices such as valves and pumps used in micro-fluidic systems. The major technical impediment in improving the performance of the micro-actuators lies in the lack of understanding the physical phenomena and their interactions of electric, mechanical, and fluidic fields for performing their intended functions. Because of the complexity of the actuator, the fully coupled numerical analysis such as finite element analysis is extremely expensive. Here, we introduce a discrete model of an Electrostatic Micro-Hydraulic (EMH) actuator. The model considers all dynamic forces which are involved in a time operation of the hydraulic actuator cell and covers three major physics: electrostatic, mechanical and fluidic. The physics have been coupled together to investigate the dynamic of the device. The discrete dynamic model developed in this work may be used for simple yet accurate predictions of dynamic performance of such actuators, and is preferable to more complicated and very expensive coupled numerical models. The analysis relies on physics-based equations and can be modified to accommodate different chamber geometries, different material properties and different working fluids. Results from the analytical model compare favorably with experimental measurements.

2015 ◽  
Vol 24 (1-2) ◽  
pp. 35-46 ◽  
Author(s):  
Saptarshi Sasmal ◽  
S. Kalidoss

AbstractIn the present study, investigations on fiber-reinforced plastic (FRP) plated-reinforced concrete (RC) beam are carried out. Numerical investigations are performed by using a nonlinear finite element analysis by incorporating cracking and crushing of concrete. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic load using the servo-hydraulic actuator in displacement control mode. Further, the validated numerical models are used to evaluate the influence of different parameters. It is found from the investigations that increase in the elastic modulus of adhesive layer and CFRP laminate increases the interfacial stresses whereas increase in laminate modulus decreases the displacement and reinforcement strain of the beam. It is also observed that increase in the adhesive layer can largely reduce the interfacial stresses, whereas increase in laminate thickness increases it. However, increase in laminate thickness decreases the displacement and reinforcement strain of the beam significantly. It is mention worthy that increase in laminate length reduces the interfacial stresses, whereas CFRP width change does not affect the interfacial stresses. The study will be useful for the design and practicing engineers for arriving at the FRP-based strengthening schemes for RC structures judiciously.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anton Melnikov ◽  
Hermann A. G. Schenk ◽  
Jorge M. Monsalve ◽  
Franziska Wall ◽  
Michael Stolz ◽  
...  

AbstractElectrostatic micromechanical actuators have numerous applications in science and technology. In many applications, they are operated in a narrow frequency range close to resonance and at a drive voltage of low variation. Recently, new applications, such as microelectromechanical systems (MEMS) microspeakers (µSpeakers), have emerged that require operation over a wide frequency and dynamic range. Simulating the dynamic performance under such circumstances is still highly cumbersome. State-of-the-art finite element analysis struggles with pull-in instability and does not deliver the necessary information about unstable equilibrium states accordingly. Convincing lumped-parameter models amenable to direct physical interpretation are missing. This inhibits the indispensable in-depth analysis of the dynamic stability of such systems. In this paper, we take a major step towards mending the situation. By combining the finite element method (FEM) with an arc-length solver, we obtain the full bifurcation diagram for electrostatic actuators based on prismatic Euler-Bernoulli beams. A subsequent modal analysis then shows that within very narrow error margins, it is exclusively the lowest Euler-Bernoulli eigenmode that dominates the beam physics over the entire relevant drive voltage range. An experiment directly recording the deflection profile of a MEMS microbeam is performed and confirms the numerical findings with astonishing precision. This enables modeling the system using a single spatial degree of freedom.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2016 ◽  
Vol 687 ◽  
pp. 236-242 ◽  
Author(s):  
Piotr Lacki ◽  
Judyta Różycka ◽  
Marcin Rogoziński

This requires the use of additional reinforcement in order to prevent excessive or permanent deformation of PVC windows. In the paper particular attention was devoted to space located in a corrosive environment exposed to chemical agents. For this purpose, proposed to change the previously used steel profiles reinforcements made of Ti6Al4V titanium alloy corrosion-resistant in the air, at sea and many types of industrial atmosphere. Analysis of the thermal insulation properties of PVC windows with additional reinforcement of profile Ti6Al4V titanium alloy was performed. PVC window set in a layer of thermal insulation was analyzed. Research was conducted using Finite Element Analysis. Numerical models and thermal calculations were made in the program ADINA, assuming appropriate material parameters. The constant internal temperature of 20 ̊ and an outer-20 ̊ was assumed. The course of temperature distribution in baffle in time 24 hours and graphs of characteristic points was obtained. The time of in which followed the steady flow of heat, as well as the course of isotherm of characteristic temperature in the baffle was determined. On the basis of numerical analysis obtained vector distribution of heat flux q [W/m2] and was determined heat transfer coefficients U [W/m2K] for the whole window with titanium reinforcement . All results were compared with the model of PVC windows reinforced with steel profile.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3120 ◽  
Author(s):  
Shanshan Hu ◽  
Huaiyang Wang ◽  
Yong Wang ◽  
Zhengshi Liu

A novel elastic body design idea of six-axis wrist force sensor with a floating beam was raised based on the analysis of the robot six-axis wrist force sensor with a floating beam. The design ideas improve the sensor’s dynamic performance significantly, while not reducing its sensitivity. First, the design ideas were described in detail, which were analyzed by mechanical modeling and were verified by finite element analysis. Second, the static simulation analysis of the novel elastomer of sensor was carried out. According to the strain distribution performance, the position of the strain gauges pasted and the connection mode of the full-bridge circuits were decided, which can achieve theoretical decoupling. Finally, the comparison between the static and dynamic performance of the novel sensor and the original sensor with floating beams was done. The results show that the static and dynamic performance of the novel six-axis wrist sensor are all better than the original sensor.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2506 ◽  
Author(s):  
Chao Liu ◽  
Yaoyao Shi

Dimensional control can be a major concern in the processing of composite structures. Compared to numerical models based on finite element methods, the analytical method can provide a faster prediction of process-induced residual stresses and deformations with a certain level of accuracy. It can explain the underlying mechanisms. In this paper, an improved analytical solution is proposed to consider thermo-viscoelastic effects on residual stresses and deformations of flat composite laminates during curing. First, an incremental differential equation is derived to describe the viscoelastic behavior of composite materials during curing. Afterward, the analytical solution is developed to solve the differential equation by assuming the solution at the current time, which is a linear combination of the corresponding Laplace equation solutions of all time. Moreover, the analytical solution is extended to investigate cure behavior of multilayer composite laminates during manufacturing. Good agreement between the analytical solution results and the experimental and finite element analysis (FEA) results validates the accuracy and effectiveness of the proposed method. Furthermore, the mechanism generating residual stresses and deformations for unsymmetrical composite laminates is investigated based on the proposed analytical solution.


Author(s):  
Tatsuya Kaneko ◽  
Ryota Wada ◽  
Masahiko Ozaki ◽  
Tomoya Inoue

Offshore drilling with drill string over 10,000m long has many technical challenges. Among them, the challenge to control the weight on bit (WOB) between a certain range is inevitable for the integrity of drill pipes and the efficiency of the drilling operation. Since WOB cannot be monitored directly during drilling, the tension at the top of the drill string is used as an indicator of the WOB. However, WOB and the surface measured tension are known to show different features. The deviation among the two is due to the dynamic longitudinal behavior of the drill string, which becomes stronger as the drill string gets longer and more elastic. One feature of the difference is related to the occurrence of high-frequency oscillation. We have analyzed the longitudinal behavior of drill string with lumped-mass model and captured the descriptive behavior of such phenomena. However, such physics-based models are not sufficient for real-time operation. There are many unknown parameters that need to be tuned to fit the actual operating conditions. In addition, the huge and complex drilling system will have non-linear behavior, especially near the drilling annulus. These features will only be captured in the data obtained during operation. The proposed hybrid model is a combination of physics-based models and data-driven models. The basic idea is to utilize data-driven techniques to integrate the obtained data during operation into the physics-based model. There are many options on how far we integrate the data-driven techniques to the physics-based model. For example, we have been successful in estimating the WOB from the surface measured tension and the displacement of the drill string top with only recurrent neural networks (RNNs), provided we have enough data of WOB. Lack of WOB measurement cannot be avoided, so the amount of data needs to be increased by utilizing results from physics-based numerical models. The aim of the research is to find a good combination of the two models. In this paper, we will discuss several hybrid model configurations and its performance.


2015 ◽  
Vol 741 ◽  
pp. 223-226
Author(s):  
Hai Bin Li

The performance of automobile drive axle housing structure affects whether the automobile design is successful or not. In this paper, the author built the FEA model of a automobile drive axle housing with shell elements by ANSYS. In order to building the optimization model of the automobile drive axle housing, the author studied the static and dynamic performance of it’s structure based on the model.


2021 ◽  
Author(s):  
Vito Busto ◽  
Donato Coviello ◽  
Andrea Lombardi ◽  
Mariarosaria De Vito ◽  
Donato Sorgente

Abstract In last decades, several numerical models of the keyhole laser welding process were developed in order to simulate the joining process. Most of them are sophisticated multiphase numerical models tempting to include all the several different physical phenomena involved. However, less computationally expensive thermo-mechanical models that are capable of satisfactorily simulating the process were developed as well. Among them, a moving volumetric equivalent heat source, whose dimensions are calibrated on experimental melt pool geometries, can estimate some aspects of the process using a Finite Element Method (FEM) modelling with no need to consider fluid flows. In this work, a double-conical volumetric heat source is used to arrange a combination of two half hourglass-like shapes with different dimensions each other. This particular arrangement aims to properly assess the laser joining of a Tailor Welded Blank (TWB) even in case of butt joint between sheets of different thicknesses. Experiments of TWBs made of 22MnB5 steel sheets were conducted in both equal and different thicknesses configurations in order to validate the proposed model. The results show that the model can estimate in a satisfactory way the shape and dimensions of the fused zone in case of TWB made of sheets with different thickness.


Sign in / Sign up

Export Citation Format

Share Document