Effect of In-Plane Fiber Tow Waviness Upon the Tensile Strength Characteristics of Fiber Reinforced Composites of Carbon/Epoxy AS4/3501-6

Author(s):  
Sai Bhargav Pottavathri ◽  
Rajeev Nair ◽  
Ramazan Asmatulu

The purpose of this study was to investigate the strength and effectiveness when induced with ‘in-plane fiber tow waviness’ in a composite ply of carbon/epoxy AS4/3501-6. Fiber waviness is usually induced by infusion processes and inherent in fabric architectures. Composite structural details like ply drops and ply joints can cause serious fiber misalignment. These are usually dependent on parameters such as ply thickness, percentage of plies dropped, and mold geometry and pressure, and pressure of the resin which slides the dry fibers during the resin transfer molding process. Fiber disorientation due to fiber tow waviness in ‘in-plane’ direction has been the subject of recent studies on wind turbine blade materials and other aerospace laminates with reports of compression strengths and failure strains that are borderline, depending upon the reinforcement architecture, matrix resin and environment. Waviness is expected to reduce compressive strength due to two primary factors. The fibers may be oriented in such a way that the geometry that results because of the orientation may exacerbate the basic fiber, strand, or layer buckling mode of failure. The waviness could also shift the fiber orientation of the axis of the ply longitudinal direction which eventually results in matrix dominated failures for plies normally orientated in the primary load direction (0°). Both global and local stress & strain values generated by the finite element model were validated by the traditional mechanical methods using ply/local stiffness matrix and global/reduced stiffness matrix. A precise geometry of waviness on different materials was modeled with different wave severity factor and a parametric study was conducted. Three different defects were modeled where the angle of misalignment ranged from 5 to 15 degrees with wavelength ranging from 1 inch to 1.5 inches and amplitude ranging from 0.03 inches to 0.7 inches. This revealed the effect of ‘in-plane fiber tow waviness’ on the stress distribution and loss of strength in carbon/epoxy AS4/3501-6. The results clearly show that the effect of ‘in-plane fiber tow waviness’ leads to resin rich areas which causes high stress concentrations and decrease in the strength ratio, ultimately leading to delamination’s.

Author(s):  
Shunji Kataoka ◽  
Takuya Sato ◽  
Takuro Honda ◽  
Masashi Takeda ◽  
Toshiya Tanimoto

The 45-degree laterals are widely used in pressure vessel nozzles and piping branch connections. Though the pressure design is always important for the 45-degree laterals, it is not a simple work because it has severe stress concentrations, it is difficult to weld and inspect, and there are some discrepancy between a conventional design and design by linear and nonlinear finite element analysis. In previous papers, authors studied the characteristics of both 90 degree tee and 45 degree laterals using an inelastic finite element analysis based on simplified shell element models and proposed Collapse Strength Reduction Factor (CSRF) based on an inelastic analysis were compared. In this paper, results of the burst test of 45-degree lateral and 90 degree intersection were shown. The fracture surface of 45-degree lateral was different from that of 90-degree intersection. These experimental results are compared with the inelastic finite element analysis results focusing on the local stress and strain behaviors. It was found that the magnitude of the local strain affected the burst pressure. Consideration should be given on the local failure due to excessive plastic strain under high stress triaxiality for the design of the 45-degree lateral by inelastic analysis.


1987 ◽  
Vol 109 (3) ◽  
pp. 444-450 ◽  
Author(s):  
L. Houpert ◽  
E. Ioannides ◽  
J. C. Kuypers ◽  
J. Tripp

A recently proposed fatigue life model for rolling bearings has been applied to the study of lifetime reduction under conditions conducive to microspalling. The presence of a spike in the EHD pressure distribution produces large shear stresses localized very close to the surface which may account for early failure. This paper describes a parametric study of the effect of such spikes. Accurate stress fields in the volume are calculated for simulated pressure spikes of different height, width and position relative to a Hertzian pressure distribution, as well as for different lubricant traction coefficients and film thicknesses. Despite the high stress concentrations in the surface layers, reductions in life predicted by the model are modest. Typically, the pressure spike may halve the life, with the implication that subsurface fatigue still dominates. In corroboration of this prediction, preliminary experimental work designed to reproduce microspalling conditions shows that microindents due to overrolling particles are a much more common form of surface damage than microspalling.


Author(s):  
Tibor Kiss ◽  
Wing-Fai Ng ◽  
Larry D. Mitchell

Abstract A high-speed rotor wheel for a wind-tunnel experiment has been designed. The rotor wheel was similar to one in an axial turbine, except that slender bars replaced the blades. The main parameters of the rotor wheel were an outer diameter of 10“, a maximum rotational speed of 24,000 RPM and a maximum transferred torque of 64 lb-ft. Due to the working environment, the rotor had to be designed with high safety margins. The coupling of the rotor wheel with the shaft was found to be the most critical issue, because of the high stress concentration factors associated with the conventional coupling methods. The efforts to reduce the stress concentrations resulted in an advanced coupling design which is the main subject of the present paper. This new design was a special key coupling in which six dowel pins were used for keys. The key slots, now pin-grooves, were placed in bosses on the inner surface of the hub. The hub of the rotor wheel was relatively long, which allowed for applying the coupling near the end faces of the hub, that is, away from the highly loaded centerplane. The long hub resulted in low radial expansion in the coupling region. Therefore, solid contact between the shaft and the hub could be maintained for all working conditions. To develop and verify the design ideas, stress and deformation analyses were carried out using quasi-two-dimensional finite element models. An overall safety factor of 3.7 resulted. The rotor has been built and successfully accelerated over the design speed in a spin test pit.


Author(s):  
Xiaozhi Wang ◽  
Joong-Kyoo Kang ◽  
Yooil Kim ◽  
Paul H. Wirsching

There are situations where a marine structure is subjected to stress cycles of such large magnitude that small, but significant, parts of the structural component in question experiences cyclic plasticity. Welded joints are particularly vulnerable because of high local stress concentrations. Fatigue caused by oscillating strain in the plastic range is called “low cycle fatigue”. Cycles to failure are typically below 104. Traditional welded joint S-N curves do not describe the fatigue strength in the low cycle region (< 104 number of cycles). Typical Class Society Rules do not directly address the low cycle fatigue problem. It is therefore the objective of this paper to present a credible fatigue damage prediction method of welded joints in the low cycle fatigue regime.


InterConf ◽  
2021 ◽  
pp. 917-933
Author(s):  
Аkbota Serikkyzy ◽  
A. Baimakhan ◽  
A. Makhanova ◽  
Baimakhan Baimakhan ◽  
G. Baimakhanova

The results of theoretical and experimental works devoted to the determination of the physical and mechanical properties of water–saturated soil are analyzed. On the basis of a comprehensive analysis, conclusions are formulated, and a method is proposed for determining the Young’s modulus and Poisson’s ratio for water-saturated soil, depending on humidity (degree of saturation) and porosity. Tables of data on the physical and mechanical properties of water–saturated soil are proposed. The study established the places of formation of local stress concentrations along the inclined layer. The values of dangerous stress concentrations found in various areas of the mountain slope that are vulnerable to collapse are shown in the tables.


2019 ◽  
Vol 60 (79) ◽  
pp. 125-136 ◽  
Author(s):  
Tao Zhang ◽  
Yuqiao Chen ◽  
Min Ding ◽  
Zhongyan Shen ◽  
Yuande Yang ◽  
...  

ABSTRACTWe conducted a 9-d seismic experiment in October 2015 at Laohugou Glacier No. 12. We identified microseismic signals using the short-term/long-term average trigger algorithm at four stations and classified them as long and short-duration events based on waveform, frequency, duration and magnitude characteristics. Both categories show systematical diurnal trends. The long-duration events are low-frequency tremor-like events that mainly occurred during the daytime with only several events per day. These events lasted tens of seconds to tens of minutes and are likely related to resonance of daytime meltwater. The dominant short-duration events mostly occurred during the night time with a peak occurrence frequency of ~360 h−1. Their short-duration (<0.2 s), high frequency (20–100 Hz) and dominance of Rayleigh waves are typical of events for near-surface crack opening. A strong negative correlation between the hourly event number and temperature change rate suggests that the occurrence of night-time events is controlled by the rate of night-time cooling. We estimated the near-surface tensile stress due to thermal contraction at night to be tens of kilopascals, which is enough to induce opening of surface cracks with pre-existing local stress concentrations, although we cannot exclude the effect of refreezing of meltwater produced during the day.


Author(s):  
Jianghong Zhao ◽  
Xin Li

The vortex gripper is a kind of pneumatic noncontact gripper that does not produce a magnetic field and heat. It can grip a workpiece without physical contact, which avoids any unintentional damage such as mechanical scratches, local stress concentrations, frictional static electricity, and surface stains. This study focused on the two-dimensional pressure distribution field on a workpiece surface under the vortex gripper. Theoretical, experimental, and computational fluid dynamics results were combined to study the backflow phenomenon in the annular skirt, which can decrease the gripper’s suction force after the maximum value is reached. First, the pressure distribution in the annular skirt was theoretically modeled. A comparison with the experimental results showed that increasing the gap height between the gripper and workpiece generates a circumferentially asymmetrical flow field in the skirt. Based on this, it was hypothesized that an airflow in the circumferential direction may exist. The experimental data and simulation results were analyzed under large gap height conditions to observe the backflow in detail and it was found that an uneven pressure distribution with positive and negative pressure regions generated by the uneven flow is the root cause of the backflow. Finally, the effect of the backflow on the flow field in two different flow regions (in the annular skirt and inside the vortex chamber) was analyzed and the reason why the suction force of the vortex gripper has a maximum value was determined.


2008 ◽  
Vol 24 (12) ◽  
pp. 2194-2205 ◽  
Author(s):  
Romana Piat ◽  
Igor Tsukrov ◽  
Thomas Böhlke ◽  
Norbert Bronzel ◽  
Tilottama Shrinivasa ◽  
...  

2013 ◽  
Vol 592-593 ◽  
pp. 61-66
Author(s):  
Maxime Sauzay ◽  
Mohamed Ould Moussa

Slip localization is widely observed in metallic polycrystals after tensile deformation, cyclic deformation or pre-irradiation followed by tensile deformation. Such strong deformation localized in thin slip bands induces local stress concentrations in the quasi-elastic matrix around, at the intersections between slip bands (SBs) and grain boundaries (GBs) where microcrack initiation is often observed. Since the work of Stroh, such stress fields have been mostly modeled using the dislocation pile-up theory which leads to stress singularities similar to the LEFM ones. The Griffith criterion has then been widely applied, leading usually to strong underestimations of the macroscopic stress to GB crack initiation. In fact, slip band thickness is finite: 20nm-1000nm depending on material, temperature and loading conditions. Then, many slip planes are plastically activated through the thickness, and not only one single atomic plane. To evaluate more realistic stress fields, numerous crystalline finite element (FE) computations have been carried out using microstructure inputs (slip band aspect ratio, crystal and GB orientation...). A strong influence of slip band thickness close to the slip band corner has been highlighted, which is not accounted for by the pile-up theory. But far away, the thickness has a negligible effect and the predicted stress fields are close to the one predicted by the pile-up theory. Closed-form expressions are deduced from the numerous FE computation results allowing a straightforward prediction of GB stress fields. Slip band plasticity parameters, such as length and thickness, as well as crystal orientation, GB plane and remote stress are taken into account. The dependence with respect to the various parameters can be understood in the framework of matching expansions usually applied to cracks with V notches of finite thickness. As the exponent of the GB stress close-field is only about one-half of the pile-up or LEFM crack one, the Griffith criterion may not be used for GB microcrack prediction in case of finite thickness. That is why finite crack fracture mechanics is used together with both energy and stress criteria. Taking into account SB finite thickness, t>0, leads to predicted remote stresses to GB microcrack initiation three to six times lower than the ones predicted using the to pile-up theory, in agreement with experimental data.


1967 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
M J Iremonger ◽  
W G Wood

An investigation has been made into the suitability of the finite-element method for studying the stresses in composite materials and the case of a single broken fibre in a matrix has been examined. It has been found that high stress concentrations occur in the region of the fibre break which increase with decreasing end gap and would cause matrix yielding or fracture at comparatively low overall stresses. When the end gap is not void but filled with matrix much lower stress concentrations occur which, below a certain value of end gap, actually decrease as the gap is made smaller.


Sign in / Sign up

Export Citation Format

Share Document