Numerical and Experimental Study of Flow Phenomenon Inside Gas Ejectors With Moist Gases Entrainment

Author(s):  
Yuping Wang ◽  
Mark Pellerin ◽  
Pravansu Mohanty ◽  
Subrata Sengupta

Gas ejectors can be found in a wide range of applications such as refrigeration and thrust augmentation. This paper focuses on the study of an ejector used in applications where moist gases are being entrained. In the first part of this work, the gas flow characteristics inside an ejector, as well as the ejector’s performance under various operating and geometric configurations, were studied with a three-dimensional computational model, which was validated against measurement data. In the second part, focus was given to the potential condensation or de-sublimation phenomena that may occur inside an ejector when water vapor is included in the entrained stream. An experiment using light-attenuation method was performed to verify the presence of a second phase, then the onset of phase change and the phase distribution were obtained numerically. A two-dimensional axis-symmetric model was developed based on the model used in the first part. A series of simulations were performed with various amounts of water vapor added into the entrained flow. It was found that both frost particles and water condensate could form inside the mixing tube depending on the operating conditions and water vapor concentrations. When the concentration exceeds 3%, water vapor could condense throughout the mixing tube. Some preliminary results of the second phase particles formed, e.g. critical sizes and distributions, were also obtained to assist with the design and optimization of gas ejectors used in similar applications.

Author(s):  
Yuping Wang ◽  
Mark Pellerin ◽  
Pravansu Mohanty ◽  
Subrata Sengupta

This paper focuses on the gas flow study of an ejector used in applications where moist gases are being entrained. Two parts of work are presented. In the first part, characteristics of gas flow inside an ejector, as well as the ejector's performance under various operating and geometric configurations, were studied with a three-dimensional computational model. Measurements were also performed for validation of the model. In the second part, focus was given to the potential condensation or desublimation phenomena that may occur inside an ejector when water vapor is included in the entrained stream. Experiments using light-attenuation method were performed to verify the presence of a second phase; then, the onset of phase change and the phase distribution were obtained numerically. A two-dimensional axis-symmetric model was developed based on the model used in the first part. User-defined functions were used to implement the phase-change criteria and particle prediction. A series of simulations were performed with various amounts of water vapor added into the entrained flow. It was found that both frost particles and water condensate could form inside the mixing tube depending on the operating conditions and water vapor concentrations. When the concentration exceeds 3% by mass, water vapor could condense throughout the mixing tube. Some preliminary results of the second phase particles formed, e.g., critical sizes and distributions, were also obtained to assist with the design and optimization of gas ejectors used in similar applications.


2019 ◽  
Vol 44 (5) ◽  
pp. 519-547
Author(s):  
Saeed Asadi ◽  
Håkan Johansson

Wind turbines normally have a long operational lifetime and experience a wide range of operating conditions. A representative set of these conditions is considered as part of a design process, as codified in standards. However, operational experience shows that failures occur more frequently than expected, the costlier of these including failures in the main bearings and gearbox. As modern turbines are equipped with sophisticated online systems, an important task is to evaluate the drive train dynamics from online measurement data. In particular, internal forces leading to fatigue can only be determined indirectly from other locations’ sensors. In this contribution, a direct wind turbine drive train is modelled using the floating frame of reference formulation for a flexible multibody dynamics system. The purpose is to evaluate drive train response based on blade root forces and bedplate motions. The dynamic response is evaluated in terms of main shaft deformation and main bearing forces under different wind conditions. The model was found to correspond well to a commercial wind turbine system simulation software (ViDyn).


Author(s):  
Marcos F. Cargnelutti ◽  
Stefan P. C. Belfroid ◽  
Wouter Schiferli ◽  
Marlies van Osch

Air-water experiments were carried out in a horizontal 1″ pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations were measured: a baseline case consisting of straight pipe only, a sharp edged bend, a large radius bend, a symmetric T-joint and a T-joint with one of the arms closed off. The gas flow was varied from a superficial velocity of 0.1 to 30 m/s and the liquid flow was varied from 0.05 to 2 m/s. This operating range ensures that the experiment encompasses all possible flow regimes. In general, the slug velocity and frequency presented a reasonable agreement with classical models. However, for high mixture velocity the measured frequency deviated from literature models. The magnitude of the measured forces was found to vary over a wide range depending on the flow regime. For slug flow conditions very high force levels were measured, up to 4 orders of magnitude higher than in single phase flow for comparable velocities. The annular flow regime resulted in the (relative) lowest forces, although the absolute amplitude is of the same order as in the case of slug flow. These results from a one inch pipe were compared to data obtained previously from similar experiments on a 6mm setup, to evaluate the scaling effects. The results for the one inch rig experiments agreed with the model proposed by Riverin, with the same scaling factor. A modification of this scaling factor is needed for the model to predict the forces measured on the 6mm rig. The validity of the theories developed based on the 6mm experiments were tested for validity at larger scales. In case of slug flow, the measured results can be described assuming a simple slug unit model. In annular and stratified flow a different model is required, since no slug unit is present. Instead, excitation force can be estimated using mixture properties. This mixture approach also describes the forces for the slug regime relatively well. Only the single phase flow is not described properly with this mixture model, as would be expected.


Author(s):  
Giuseppe Catania ◽  
Nicolo` Mancinelli

This study refers to the investigation on the critical operating condition occurring on high productivity milling machines, known as chatter. This phenomenon is generated by a self-excited vibration, associated with a loss of stability of the system, causing reduced productivity, poor surface finish and noise. This study consists of the theoretical and experimental modeling of machining chatter conditions, in order to develop a real-time monitoring system able to diagnose the occurrence of chatter in advance and to dynamically modify the cutting parameters for process optimization. A prototype NC 3-axis milling machine was ad hoc realized to accomplish this task. The machine was instrumented by a dynamometer table, and a series of accelerometer sensors were mounted in the proximity of the tool spindle and the workpiece. An analytical model was developed, taking into account the periodic cutting force arising during interrupted cutting operation in milling. The system dynamical behavior was described by means of a set of delay differential equations with periodic coefficients. The stability of this system was analyzed by the semi discretization approach based on the Floquet theory. Lobe stability charts were evaluated and associated with frequency diagrams. Two chatter types were analytically and experimentally detected: period-doubling bifurcations and secondary Hopf bifurcations. Measurement data were acquired and analyzed in the time and frequency domain. Several tests were conducted in a wide range of operating conditions, such as radial immersion, depth of cut and spindle speeds and using different tools. Results are reported showing agreement between the numerical analysis and the related experimental tests.


Author(s):  
Chungpyo Hong ◽  
Toru Yamada ◽  
Yutaka Asako ◽  
Mohammad Faghri ◽  
Koichi Suzuki ◽  
...  

This paper presents experimental results on flow characteristics of laminar, transitional to turbulent gas flows through micro-channels. The experiments were performed for three micro-channels. The micro-channels were etched into silicon wafers, capped with glass, and their hydraulic diameter are 69.48, 99.36 and 147.76 μm. The pressure was measured at seven locations along the channel length to determine local values of Mach number and friction factor for a wide range of flow regime from laminar to turbulent flow. Flow characteristics in transitional flow regime to turbulence were obtained. The result shows that f·Re is a function of Mach number and higher than incompressible value due to the compressibility effect. The values of f·Re were compared with f·Re correlations in available literature.


Author(s):  
Hélène Chaumat ◽  
Anne-Marie Billet ◽  
Henri Delmas

A detailed investigation of local hydrodynamics in a pilot plant bubble column has been performed using various techniques, exploring both axial and radial variations of the gas hold-up, bubble average diameter and frequency, surface area. A wide range of operating conditions has been explored up to large gas and liquid flow rates, with two sparger types. Two main complementary techniques were used: a quasi local measurement of gas hold-up via series of differential pressure sensors to get the axial variation and a double optic probe giving radial variations of gad hold-up, bubble average size and frequency and surface area.According to axial evolutions, three zones, where radial evolutions have been detailed, have been separated: at the bottom the gas injection zone, the large central region or column bulk and the disengagement zone at the column top. It was found that significant axial and radial variations of the two phase flow characteristics do exist even in the so called homogeneous regime. The normalized profiles of bubble frequency appear sparger and gas velocity independent contrary to bubble diameter, gas hold-up and interfacial area normalized profiles. In any case bubbles are larger in the sparger zone than elsewhere.The main result of this work is the very strong effect of liquid flow on bubble column hydrodynamics at low gas flow rate. First the flow regime map observed in batch mode is dramatically modified with a drastic reduction of the homogeneous regime region, up to a complete heterogeneous regime in the working conditions (uG> 0.02 m/s). On the contrary, liquid flow has limited effects at very high gas flow rates.A large data bank is provided to be used for example in detailed comparison with CFD calculations.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012001
Author(s):  
S G Skripkin ◽  
D A Suslov ◽  
I V Litvinov ◽  
E U Gorelikov ◽  
M A Tsoy ◽  
...  

Abstract This article presents a comparative analysis of flow characteristics behind a hydraulic turbine runner in air and water. Swirling flow with a precessing vortex core (PVC) was investigated using a laser Doppler anemometer and pressure pulsation sensors. The experiments were conducted on aerodynamic and hydrodynamic test rigs over a wide range of hydraulic turbine operating conditions. Part-load modes of hydraulic turbine operation were investigated using the Fourier transform of pressure pulsations obtained from acoustic sensors. The features of the swirling flow were shown for the range of operating conditions from deep partl-load to overload.


Author(s):  
M. Ellis ◽  
C. Kurwitz ◽  
F. Best

In the microgravity environment experienced by space vehicles, liquid and gas do not naturally separate as on Earth. This behavior presents a problem for two-phase space systems, such as environment conditioning, waste water processing, and power systems. Furthermore, with recent renewed interest in space nuclear power systems, a microgravity Rankine cycle is attractive for thermal to electric energy conversion and would require a phase separation device. Responding to this need, researchers have conceived various methods of producing phase separation in low gravity environments. These separator types have included wicking, elbow, hydrophobic/hydrophilic, vortex, rotary fan separators, and combinations thereof. Each class of separator achieved acceptable performance for particular applications and most performed in some capacity for the space program. However, increased integration of multiphase systems requires a separator design adaptable to a variety of system operating conditions. To this end, researchers at Texas A&M University (TAMU) have developed a Microgravity Vortex Separator (MVS) capable of handling both a wide range of inlet conditions as well as changes in these conditions with a single, passive design. Currently, rotary separators are recognized as the most versatile microgravity separation technology. However, compared with passive designs, rotary separators suffer from higher power consumption, more complicated mechanical design, and higher maintenance requirements than passive separators. Furthermore, research completed over the past decade has shown the MVS more resistant to inlet flow variations and versatile in application. Most investigations were conducted as part of system integration experiments including, among others, propellant transfer, waste water processing, and fuel cell systems. Testing involved determination of hydrodynamic conditions relating to vortex stability, inlet quality effects, accumulation volume potential, and dynamic volume monitoring. In most cases, a 1.2 liter separator was found to accommodate system flow conditions. This size produced reliable phase separation for liquid flow rates from 1.8 to 9.8 liters per minute, for gas flow rates of 0.5 to 180 standard liters per minute, over the full range of quality, and with fluid inventory changes up to 0.35 liters. Moreover, an acoustic sensor, integrated into the wall of the separation chamber, allows liquid film thickness monitoring with an accuracy of 0.1 inches. Currently, application of the MVS is being extended to cabin air dehumidification and a Rankine power cycle system. Both of these projects will allow further development of the TAMU separator.


1980 ◽  
Vol 102 (1) ◽  
pp. 193-201 ◽  
Author(s):  
I. Khalil ◽  
W. Tabakoff ◽  
A. Hamed

A method for analyzing the viscous flow through turbomachine rotors is presented. The field analysis is based on the solution of the full Navier-Stokes equations over the rotor blade-to-blade stream channels. An Alternating-Direction-Implicit method is employed to carry out the necessary numerical integration of the elliptic governing equations. The flow analysis may be applied to various types of turbomachine rotors. Preliminarily, only the case of laminar flows are considered in this paper. The flow characteristics within the rotors of a radial inflow turbine and a radial bladed compressor are investigated over a wide range of operating conditions. Excellent results are obtained when compared with existing experimental data. The method of this analysis is quite general and can deal with wide range of applications. Possible modification of the present study to deal with turbulent flow cases are also identified.


Author(s):  
M. Häfele ◽  
C. Traxinger ◽  
M. Grübel ◽  
M. Schatz ◽  
D. M. Vogt ◽  
...  

An experimental and numerical study on the flow in a three stage low pressure (LP) industrial steam turbine is presented and analyzed. The investigated LP section features conical friction bolts in the last and a lacing wire in the penultimate rotor blade row. These part-span connectors (PSC) allow safe turbine operation over an extremely wide range and even in blade resonance condition. However, additional losses are generated which affect the performance of the turbine. In order to capture their impact on the flow field, extensive measurements with pneumatic multi-hole probes in an industrial steam turbine test rig have been carried out. State-of-the-art three-dimensional CFD applying a non-equilibrium steam (NES) model is used to examine the aero-thermodynamic effects of the PSC on the wet steam flow. A detailed comparison between measurement data and CFD results is performed for several operating conditions. The investigation shows that the applied CFD model is able to capture the three-dimensional flow field in LP steam turbine blading with PSC and the total pressure reduction due to the PSC with a generally good agreement to measured values and is therefore sufficient for engineering practice.


Sign in / Sign up

Export Citation Format

Share Document