Mechanical Behavior and Microstructure of Electron Beam Melted Ti-6Al-4V Using Digital Image Correlation

Author(s):  
Mohammad Shafinul Haque ◽  
Edel Arrieta ◽  
Jorge Mireles ◽  
Cesar Carrasco ◽  
Calvin M. Stewart ◽  
...  

The reputation of additive manufacturing technology has increased dramatically in recent years due to its freedom of design, customization, and waste minimization. The growing demand for complex profile components to achieve more economic and strength-to-weight efficient aero-engine components can be met by additive manufacturing technology. In this study, electron beam melting (EBM), a powder bed additive layer manufacturing process, is used to manufacture Ti-6Al-4V tensile specimens. The Ti-6AL-4V alloy has excellent corrosion and high temperature resistance with a high strength-to-weight ratio. It is widely used in the power generation, aerospace, and medical industries. An Arcam Ti-6Al-4V prealloyed powder with particle sizes ranging from 45μ–100μ is used in an Arcam A2 machine to manufacture three specimens at zero degree manufacturing orientation. The zero degree manufacturing orientation is expected to exhibit a higher strength over other orientations. The EBM manufacturing parameters were set at 15mA current and 4530 mm/sec beam speed. Tensile tests were performed at room temperature (25.5°C) under a strain rate of 0.003 mm/mm/min according to the ASTM E8 standard for strain-rate sensitive materials. Stress-strain curves are plotted and discussed. Tensile test results indicate a tensile strength of 1.2 GPa and an elongation of 8% approximately. Three Dimensional Digital Image Correlation (3D-DIC) is used to measure the full strain field and deformation evolution on the surface of the specimens. The 3D-DIC system compares digital photographs (taken at two different angles simultaneously) of the surface of a specimen and calculates the deformation and strain fields. Using the strain fields the mechanical properties are determined by the relationships in the strain tensor. The tensile test results show that for a zero degree manufacturing orientation, the yield strength (YS) and ultimate tensile strength (UTS) are higher than that typically reported for wrought products. Fractography using optical microscopy (OM) and Scanning Electron Microscopy (SEM) were conducted. Micrographs of transverse section of the specimen were obtained to identify and analyze the failure mechanism that took place during testing. The built direction, presence of voids, manufacturing defects, and unmelted particles are observed from the SEM views. Surface roughness and microstructure were observed in the OM. A comparison of the obtained results with the literature for additively manufactured Ti-6Al-4V and possible causes are discussed.

Author(s):  
Edel Arrieta ◽  
Mohammad Haque ◽  
Jorge Mireles ◽  
Calvin Stewart ◽  
Cesar Carrasco ◽  
...  

Mechanical properties of additive manufactured metal components can be affected by the orientation of the layer deposition. In this investigation, Ti–6Al–4V cylindrical specimens were fabricated by electron beam melting (EBM) at four different build angles (0 deg, 30 deg, 60 deg, and 90 deg) and tested as per ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials. With the layer-by-layer fabrication suggesting granting anisotropic properties to the builds, strain fields were recorded by digital image correlation (DIC) in the search for shear effects under uniaxial loads. For the validation of this measuring method, axial strains were measured with a clip extensometer and a virtual extensometer, simultaneously. Failure analysis of the specimens at different orientations was conducted to evidence the recording of shear strain fields. The failure analysis included fractography, optical micrographs of the microstructure distribution, and failure profiles displaying different failure features associated with the layering orientation. Additionally, an experimental study case of how the failure mode of components can potentially be designed from the fabrication process is presented. At the end, remarks about the shear effects found, and an insight of the possibility of designing components by failure for safer structures are discussed.


Author(s):  
William Siefert ◽  
James Rule ◽  
Boian Alexandrov ◽  
Mike Buehner ◽  
Jorge A. Penso

Abstract Qualification for weld strength is typically accomplished using cross weld tensile testing. This style of testing only gives the global behavior of the welded joint and limited materials properties, such as elongation at failure and tensile strength of the material where final failure occurs. Qualification for welded structures usually requires the weldment fails in the base metal. Final failure in cross weld tensile tests in the base metal does not provide information about the actual weld metal and heat affected zone properties. There may be weaker points in the microstructure that cannot be identified in a global cross weld tensile test due to being constrained by surrounding microstructures. Additionally, the traditional cross weld tensile test does not quantify how strain accumulates and transfers in the microstructure at various loads. Using Digital Image Correlation (DIC) in combination with tensile testing, local strain of the various microstructures present across the weld was obtained for ferritic to austenitic dissimilar metal welds (DMW), as well as for a typical “matching” ferritic steel filler metal weld with a higher tensile strength than the base metal. This test also showed where and how strain accumulated and transferred during tensile loading of various welded microstructures. Local yield stresses of each region were also obtained. Obtaining such local properties provides insight into design and service limits of welded components in service.


2015 ◽  
Vol 22 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Stanisław Adamczak ◽  
Jerzy Bochnia ◽  
Bożena Kaczmarska

AbstractThe aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
P. Wanjara ◽  
K. Watanabe ◽  
C. de Formanoir ◽  
Q. Yang ◽  
C. Bescond ◽  
...  

Wire feeding can be combined with different heat sources, for example, arc, laser, and electron beam, to enable additive manufacturing and repair of metallic materials. In the case of titanium alloys, the vacuum operational environment of electron beam systems prevents atmospheric contamination during high-temperature processing and ensures high performance and reliability of additively manufactured or repaired components. In the present work, the feasibility of developing a repair process that emulates refurbishing an “extensively eroded” fan blade leading edge using wire-feed electron beam additive manufacturing technology was examined. The integrity of the Ti6Al4V wall structure deposited on a 3 mm thick Ti6Al4V substrate was verified using X-ray microcomputed tomography with a three-dimensional reconstruction. To understand the geometrical distortion in the substrate, three-dimensional displacement mapping with digital image correlation was undertaken after refurbishment and postdeposition stress relief heat treatment. Other characteristics of the repair were examined by assessing the macro- and microstructure, residual stresses, microhardness, tensile and fatigue properties, and static and dynamic failure mechanisms.


2016 ◽  
Vol 722 ◽  
pp. 325-330 ◽  
Author(s):  
Václav Nežerka ◽  
Michael Somr ◽  
Tomáš Janda ◽  
Martin Doškář ◽  
Jan Zeman ◽  
...  

Preliminary outcomes on a novel modular additive manufacturing technology are presentedin this contribution. The capabilities of the proposed system to synthesize materials with conventionalor meta properties are explored. Two limiting and a single mixed compositions are tested in com-pression in order to reveal both, global and local behaviours of the conglomerates. The experimentalmeasurements are supported by DIC (Digital Image Correlation) observations.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


Sign in / Sign up

Export Citation Format

Share Document