Metamaterial Application in Stress Wave Mitigation Generated by Impulsive Force

Author(s):  
Gustavo Simão Rodrigues ◽  
Hans Ingo Weber

The idea to use metamaterials to mitigate mechanical waves is recent and constitutes a technology under development. These materials have a special design, presenting characteristics not found in nature. The interesting feature is a negative effective mass density. This property is achieved by creating in the structure masses linked by springs which act as internal resonators and, as a result, it is observed that metamaterials act as mechanical filters, preventing or reducing the intensity of propagation of mechanical waves that travel in the structure, when the frequency of propagation is close to the resonance frequencies of the internal resonators. An internal combustion generates a blast wave which acts on a structure as an impulsive effort. This is a basic phenomenon in the shooting of an armament leading to this research that target to investigate the possible application of metamaterials to improve recoil mechanism technology. A recoil mechanism moderates the firing loads on the supporting structure by prolonging the time of resistance to the propellant gas forces. Depending on application of the armament, recoil can be very undesirable. Firstly, carriage mount where the armament is fixed will suffer premature wear. Secondly and more critical, if the armament is mounted onto a vehicle, its dynamics during shooting is completely affected and an accident can be caused when shooting occurs during a critical situation, like a curvilinear path for example. It is intended to use numerical simulations and experimental validation to verify the behavior of the designed metamaterial under a controlled impulse input. Finite Element Method (FEM) is used to simulate wave propagation through a common material and then through a special designed metamaterial to evaluate how this kind of pulse will be affected by internal resonators. After the simulations, a prototype adequate to validate numerical results will be investigated on a test bench. In a further development the impulse input will be adapted to real measured blast efforts.

2015 ◽  
Vol 82 (3) ◽  
Author(s):  
Xiyue An ◽  
Fangfang Sun ◽  
Peishi Yu ◽  
Hualin Fan ◽  
Shiping He ◽  
...  

A theoretical model of one-dimensional (1D) hierarchical metacomposite with internal resonators was proposed to generate negative effective mass over specific frequency ranges. Different from the single-resonator microstructure, the current hierarchical metamaterial with multilevel resonators was constructed by a series of springs and rigid bodies. The general formula of the current hierarchical metamaterial model was induced to reveal the relationship between the effective mass and the forcing frequency. It is found that the hierarchical metamaterial with multilevel resonators generates multifrequency band gaps with negative effective masses. The number of the band gaps equals to the order of the hierarchy. The total bandwidth for the negative effective mass increases with the hierarchy, meanwhile increasing the mass ratio can also obviously increase the bandwidth generating negative effective mass.


2001 ◽  
Vol 117 (1-2) ◽  
pp. 83-97 ◽  
Author(s):  
Simon M. Iveson ◽  
Philippe A.L. Wauters ◽  
Sarah Forrest ◽  
James D. Litster ◽  
Gabrie M.H. Meesters ◽  
...  

Author(s):  
Mark Holdhusen ◽  
Kenneth A. Cunefare

A state-switched absorber (SSA) is a device capable of instantaneously changing its stiffness, thus it can switch between resonance frequencies, increasing its effective bandwidth as compared to classical tuned vibration absorbers for vibration control. Previous numerical work has shown that an optimized SSA outperforms an optimized TVA at controlling vibrations of both a beam and a plate. This paper details the experimental validation of these simulation results. An SSA was realized by employing magneto-rheological elastomers to achieve a stiffness change. The stiffness of these elastomers is a function of the magnetic field put across them. Experiments were conducted on both a cantilever beam and a square plate clamped on all sides. Each system was excited by several two-frequency component excitations. For each forcing combination, several tuning configurations of the SSA were applied and the kinetic energy of the system was found. This observed performance was compared to the performance found through numerical simulations of a system with a similar tuning and excitation configuration. It was found that the observed performance follows closely with results found through numerical simulation.


Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotorstator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the non-rotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gages, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disc. Its predictions are in good agreement with experimental results.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5863
Author(s):  
Massimo Cardone ◽  
Bonaventura Gargiulo

This paper presents a virtual model of a scroll compressor developed on the one-dimensional analysis software Simcenter Amesim®. The model is semi-empirical: it needs some physical details of the modelled machine (e.g., the cubic capacity), but, on the other hand, it does not require the geometrical features of the spirals, so it needs experimental data to calibrate it. The model also requires rotational speed and the outlet temperature as boundary conditions. The model predicts the power consumption and the mass flow rate and considers leakages and mechanical losses. After the model presentation, this paper describes the test bench and the obtained data used to calibrate and validate the model. At last, the calibration process is described, and the results are discussed. The calculated values fit the experimental data also in extrapolation, despite the model is simple and performs calculations within 7 s. Due to these characteristics, the model is suitable for being used in a larger model as a sub-component.


2020 ◽  
Vol 35 ◽  
Author(s):  
Kuo-Yang Tu ◽  
Hong-Yu Lin ◽  
You-Ru Li ◽  
Che-Ping Hung ◽  
Jacky Baltes

Abstract A humanoid robot developed to play multievent athletes like human has paved a way for interesting and popular robotics research. One of the great dreams is to develop a humanoid robot being able to challenge human athletes. Therefore, the challenge of humanoid robots to play archery against human is organized at Taichung, Taiwan, in HuroCup, FIRA 2018, on August 7th. The difficulties of developing humanoid robot are not just on playing archery. The humanoid robots for HuroCup must make use of the same hardware for the 10 events. In this paper, the design and implementation of the humanoid robot for archery are proposed under the trade off with other nine events. Therefore, the humanoid robot must have some special design and development on software. More specially, the humanoid robot must use professional bow to challenge human for archery competition. Therefore, in this paper, special shooting posture under constrained arm structure and motion planning of both arms for more torque to play professional bow are proposed. In addition, the further development of humanoid robot to improve archery shooting is summarized.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotor-stator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the nonrotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gauges, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disk. Its predictions are in good agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document