Study of Tapping Process of Ti6Al4V Using Finite Element (FE) Simulation

Author(s):  
Ali Daneji ◽  
Salman Pervaiz ◽  
Sathish Kannan

Abstract Finite element (FE) assisted numerical modeling approach is known as a popular approach to predict the machining performance of different machining operations. Tapping operation is a well-known manufacturing process that is used to cut threads efficiently. In the automotive and aerospace applications, precisely machined tapped holes are required in the small size deep holes. Tapping process creates thread in the hole and make it ready for fastening with other mating components. Tapping operation is considered as one of the most complex machining operations due to the presence of multi-flutes and multi-land involvement between the workpiece and cutter materials. The outcome of the tapping process results in the generation of threads and accepted as one of the most commonly employed in fastening methods for the joining of different machine components. Literature revealed that tapping process has been very rarely investigated using computational modeling approaches, as most of the available studies are experimental in nature. The experimental work for tapping operation can be very time and cost consuming because of the expensive fabrication of the cutting tools. It has also been observed experimentally that minor change in the threading profiles can generate significant difference in the cutting torque. A possible solution is to analyse the whole tapping operation using finite element (FE) assisted numerical simulation. Similarly, there will be limitation towards experiments if the workpiece material is expensive and difficult to cut. It is a common observation in metal cutting industry that most of the times cutting tap results in breakage when exposed to the higher magnitude of torque. The current study is aimed on the finite element based computational investigations on the tapping process using Ti6Al4V as a workpiece material. High hot hardness and low thermal conductivity of the Ti6Al4V also plays a significant role towards the poor machining performance of the threading tool. Ti6Al4V is most commonly employed in the engineering applications where high strength to weight ratio and ability of operate at higher temperatures is required. Ti6Al4V is mainly utilized in the automotive, aerospace, biomedical and petrochemical industries. It has been identified that tapping operation is very rarely studied machining operation in the metal cutting scientific community. Different tapping process conditions were investigated computationally using finite element (FE) approach and as a result cutting forces, torques and power consumed were observed. The study provides a useful understanding towards the tapping process mechanics with respect to different cutting parameters.

2015 ◽  
Vol 5 (1) ◽  
pp. 97 ◽  
Author(s):  
Marcus Schulze ◽  
Holger Seidlitz ◽  
Franziska Konig ◽  
Sabine WeiB

<p class="1Body">Multi-layer constructions become more and more relevant in lightweight applications due to their high strength to weight ratio. They offer excellent crash, damping and recycling properties. Also, the morphology of thermoplastic carbon fibre reinforced plastics (CFRP) render them interesting for large scale manufacturing processes. Nevertheless, a major disadvantage results in a poor resistance against wear and tear, e.g. erosion, which is attributed to weak hardness properties. Hence, this work deals with tribological investigations on orthotropic carbon fibre reinforced polymers (PA 6) either with protective ceramic coating or without. The chosen coating system is a well-known protective covering of metal components, e.g. metal cutting tools, produced by physical vapor deposition (PVD). To characterize the coating system on thermoplastic CFRP, standard analyzing methods are utilized, like optical and scanning electron microscopy (SEM). The tribological investigations are conducted by the tribological ball on disk method to generate wear tracks on the sample surfaces and hence to calculate the wear rates. These results are compared to literature findings with respect to a certain protective coating system (TiN) and a second nano-structured gel coating system, where both systems are deposited on a thermosetting material, i.e. carbon fibre reinforced epoxy resin, respectively. For this purpose the feasibility of depositing a protective ceramic layer on thermoplastic CFRP is demonstrated. First results on suitable surface pre-treatments have shown a significant influence on the coating quality. The improved performance regarding the wear behavior with respect to tribology compared to the poor substrate and existing technologies is shown additionally.</p>


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


2011 ◽  
Vol 223 ◽  
pp. 554-563 ◽  
Author(s):  
Noemia Gomes de Mattos de Mesquita ◽  
José Eduardo Ferreira de Oliveira ◽  
Arimatea Quaresma Ferraz

Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have direct influence on production. The premature removal of the cutting tool results in high cost of machining, since the parcel relating to the cost of the cutting tool increases. On the other hand the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use, when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.


Author(s):  
Mariyeh Moradnazhad ◽  
Hakki Ozgur Unver

Manufacturing processes are among the most energy intensive on earth. As negative ecological and economic impacts increase, reducing energy consumption is becoming critically important. In this article, a comprehensive overview of energy-saving strategies and opportunities for increasing energy efficiency in manufacturing operations is presented, with a focus on metal cutting processes. The issues and approaches involved in energy efficiency of machine tools and machining operations are reported in the literature and a structured research methodology is proposed for this purpose including prediction and modelling of machine energy consumption, determining the relationship between process energy consumption and process variables for material removal processes and optimization of cutting parameters in order to reduce energy consumption. Numerous techniques for increasing energy efficiency in manufacturing processes are identified and summarized, strengths and weaknesses of previous studies are discussed and potential avenues for future research are suggested.


Author(s):  
Radu Pavel ◽  
Keith Sinram ◽  
Dana Combs ◽  
Jim Pillar ◽  
Ioan Marinescu

Hard turning is the process to watch in many industries, as it is a perfect candidate for the actual trends toward automation and flexible manufacturing. However, there are still many possible conjunctures created by different geometries or materials of the workpieces versus different types of cutting tools with effect on workpiece surface quality, tool wear, machine tool vibrations, etc. These insufficiently explored combinations make manufacturers hesitate to adopt hard turning as a finishing process. This paper brings new findings concerning the effect of cutting parameters and tool nose radius variations on surface finish as a result of continuous and interrupted hard turning. The considered workpieces are a camshaft made of AISI 1117 steel at 62 HRC for continuous cutting, and a spline shaft made of AISI 1137 steel at 48 HRC for interrupted cutting. Two types of PcBN cutting tools are used for both types of component parts. The investigation highlights the differences between the ideal, geometrically determined, surface roughness Ra and the experimental results, as well as the differences recorded between the continuous and interrupted cutting situations. The factorial experimentation technique was employed taking the resulting surface rughness (Ra) as a response variable. The influence of tool wear was finally considered in the analysis of the predicted values of roughness obtained through characteristic regression equations. A significant difference of roughness evolution versus tool wear was recorded for the continuous and interrupted surfaces. The analysis was completed based on profilometry and light interferometry measurements as well as optical and SEM microscopy observations.


Author(s):  
Salman Pervaiz ◽  
Sathish Kannan ◽  
Wael Abdel Samad

In machining operation, cutting tool performs a central role towards the overall machining performance. A user from metal cutting community always look for better cutting tools that can enhance productivity by reducing tool wear and cost. Modification in the micro-geometry of cutting edge is termed as edge preparation, and it is performed to improve the machining performance by strengthening the cutting edge, reducing internal stresses of coating and lowering the edge chipping etc. Edge preparation has a controlling influence on the formation of deformation zones, cutting temperature, cutting forces and stresses at the cutting interface. Vibration assisted machining (VAM) concept is gaining fame in the metal cutting sector community for machining difficult-to-machine materials. In VAM, cutting tool moves with a small amplitude vibration instead of moving with a constant cutting velocity. This small amplitude vibrational movement provides better machining performance for difficult-to-cut brittle materials. The current numerical study utilized different edge prepared micro-geometries such as sharp edge, round edge and chamfer edge etc. cutting tools, and then these cutting tools were used in the numerical simulations of VAM. The study shows higher magnitude of cutting forces under VAM with tools with modified geometry. The study is beneficial for the metal cutting community and opens new areas of industrial applications.


2013 ◽  
Vol 710 ◽  
pp. 223-227
Author(s):  
Yan Cao ◽  
Hua Chen ◽  
Hai Xia Zhao

Based on the study on metal cutting theories and rigid-plastic finite element method, taking Sweden SECO lathe tool MDT as the researching object, the cutting force in cutting process is analyzed after a cutting process simulation model is constructed using finite element method. Different simulation parameters and cutting parameters are used to carry out analyses time after time. The dynamic changing curves of the cutting force in cutting process are obtained. Through the comparison of the cutting force in different cutting conditions, the influence of cutting parameters on the cutting force is summarized. The research can provide useful data for improvement of metal cutting technology and tool cutting performance.


2017 ◽  
Vol 260 ◽  
pp. 219-226 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Eriks Gerins ◽  
Janis Rudzitis ◽  
Artis Kromanis

From the invention of turning machine or lathe, some engineers are trying to increase the turning productivity. The increase of productivity is following after the breakout in instrumental area, such as the hard alloy instrument and resistance to wear cutting surfaces. The potential of cutting speed has a certain limit. New steel marks and cutting surfaces types allow significantly increase cutting and turning speeds. For the most operation types the productivity increase begins from the feeding increase. But the increase of feeding goes together with machined surface result decreasement. Metal cutting with high feeding is one of the most actual problems in the increasing of manufacturing volume but there are some problems one of them is the cutting forces increasement and larger metal removal rate, which decrease the cutting tool life significantly. Increasing of manufacturing volume, going together with the cutting instrument technology and material evolution, such as the invention of the carbide cutting materials and wear resistant coatings such as TiC and Ti(C,N). Each of these coating have its own properties and functions in the metal cutting process. Together with this evolution the cutting tool geometry and machining parameters dependencies are researched. Traditionally for the decreasing the machining time of one part, the cutting parameters were increased, decreasing by this way the machining operation quantity. In our days the wear resistance of the cutting tools increasing and it is mostly used one or two machining operations (medium and fine finishing). The purpose of the topic is to represent the experimental results of the stainless steel turning process, using increased cutting speeds and feeding values, to develop advanced processing technology, using new modern coated cutting tools by CVD and PVD methods. After investigation of the machined surface roughness results, develop the mathematical model of the cutting process using higher values of the cutting parameters.


2013 ◽  
Vol 589-590 ◽  
pp. 38-44
Author(s):  
Gang Liu ◽  
Ming Chen ◽  
Peng Nan Li ◽  
Qing Zhen Bi ◽  
Bao Cai Guo

The concept of multi-constrained analysis of the cutting process is presented for the first time in the paper. The paper adopts a method to solve an important problem which is how to judge the influence of constrains during the cutting process. The research results are applied for HSS drills for cutting stainless steel. On the basis of the multi-constrained analysis combined with methods of simulations and standard experiments, the optimum methods are provided for structure, coating and cutting parameters of cutting tools. For geometric structure of tools, optimization is to increase thickness of cutting and rake angle. Coating optimization strategy is choosing high temperature hardness and low thermal conductivity coating. Optimization of cutting parameter is to adjust feed fate, then select proper cutting speed. The conclusion of paper is helpful for the cutting optimization.


2011 ◽  
Vol 314-316 ◽  
pp. 900-903
Author(s):  
Yan Cao ◽  
Hua Chen ◽  
Hai Xia Zhao

On the basis of metal cutting and rigid-plastic finite element theories, taking cutting force in turning process as the research object, a FEA model for turning process using a MDT cutter on a centre lathe CA6140 is constructed to simulate its metal cutting process. Using Deform 3D, cutting forces are calculated according to different cutting parameters. The influences of the cutting parameters on the cutting forces are investigated. In order to validate the FEA model, cutting experiments are conducted. Comparison between simulated cutting forces and experimental forces shows similar trends and reasonable agreement.


Sign in / Sign up

Export Citation Format

Share Document