Oklahoma City Contaminant Dispersion: Concentration Data Processing and Analysis for a Scaled Puff Release Experiment

Author(s):  
Ty Homan

Abstract Magnetic resonance techniques were leveraged to obtain velocity and concentration measurements for a puff release contaminant dispersion study. The study involved a scaled model of downtown Oklahoma City as it was in 2003, and sought to provide a high fidelity, three-dimensional data set for comparison with JU2003 and subsequent studies. The scaled model was placed in a water channel with fully turbulent flow (Re = 36,000), and an MRI system was used to take scans at 12 time-specific measurement phases throughout the puff injection cycle. The present work details processing methods applied to the nearly 650 million magnetic resonance concentration (MRC) data points obtained from the study. Processing entailed the calculation of a concentration field through background subtraction and normalization involving several distinct scan types. Uncertainty was reduced through the scaling and combination of high molarity scans. Processing methods are followed by a preliminary investigation of the results, which highlights noteworthy elements of scalar transport within the data set and the need for further investigation of the complex flow field. The study ultimately demonstrates the applicability of magnetic resonance techniques to puff release and dynamic experimental conditions, as well as a method for working with data from phase-locked experiments.

Author(s):  
Michael Benson ◽  
Daniel Chung ◽  
Gabriel Fuhrman ◽  
David Helmer ◽  
Ty Homan ◽  
...  

Abstract Motivated by the Joint Urban 2003 field project and subsequent studies, magnetic resonance imaging (MRI) techniques were used to collect full-field measurements of three-dimensional fluid velocity and concentration across a scaled model of 2003 Oklahoma City. The study was intended to develop, test, and demonstrate a repeatable puff release with MRI compatible equipment. In order to accomplish this, a contaminant was injected through the floor of a city model in discrete puffs using a solenoid valve. Sealed to fit inside a water channel, the 1:2,206 scale city model covered the central business district of the city as it was in 2003. The main flow was fully turbulent with a Reynolds number of 36,000, while vertical puff injection occurred at a Reynolds number of 2,642. Using MRV and MRC methods, the three components of velocity and concentration were measured at more than 2 million locations for each of the 12 phases of the injection period. MRV measurements examined the fluid flow with respect to building geometry. Collected at heights corresponding to this MRV data, MRC measurements enabled the analysis of the vertical and lateral dispersion of the contaminant. Ultimately, the study demonstrated a novel MRI technique through contaminant puff release and can be used for the validation of urban contaminant dispersion models.


Author(s):  
Mallikarjunaswamy Shivagangadharaiah Matada ◽  
Mallikarjun Sayabanna Holi ◽  
Rajesh Raman ◽  
Sujana Theja Jayaramu Suvarna

Background: Osteoarthritis (OA) is a degenerative disease of joint cartilage affecting the elderly people around the world. Visualization and quantification of cartilage is very much essential for the assessment of OA and rehabilitation of the affected people. Magnetic Resonance Imaging (MRI) is the most widely used imaging modality in the treatment of knee joint diseases. But there are many challenges in proper visualization and quantification of articular cartilage using MRI. Volume rendering and 3D visualization can provide an overview of anatomy and disease condition of knee joint. In this work, cartilage is segmented from knee joint MRI, visualized in 3D using Volume of Interest (VOI) approach. Methods: Visualization of cartilage helps in the assessment of cartilage degradation in diseased knee joints. Cartilage thickness and volume were quantified using image processing techniques in OA affected knee joints. Statistical analysis is carried out on processed data set consisting of 110 of knee joints which include male (56) and female (54) of normal (22) and different stages of OA (88). The differences in thickness and volume of cartilage were observed in cartilage in groups based on age, gender and BMI in normal and progressive OA knee joints. Results: The results show that size and volume of cartilage are found to be significantly low in OA as compared to normal knee joints. The cartilage thickness and volume is significantly low for people with age 50 years and above and Body Mass Index (BMI) equal and greater than 25. Cartilage volume correlates with the progression of the disease and can be used for the evaluation of the response to therapies. Conclusion: The developed methods can be used as helping tool in the assessment of cartilage degradation in OA affected knee joint patients and treatment planning.


2021 ◽  
Author(s):  
Shuai Chen ◽  
Xiaohong Ruan

Abstract Nitrate (NO3-N) load characteristics in consecutive dry years in the Huai River Basin (HRB), China, were examined using streamflow and NO3-N concentration data. The data set spanned 12 years including three consecutive dry years. Baseflow separation, load estimation, and nonparametric linear regression were applied to separate point source (PS), baseflow, and surface runoff NO3-N loads from the total load. The mean annual nonpoint source (NPS) load was 2.84 kg·ha−1·yr−1, accounting for 90.8% of the total load. Baseflow contributed approximately one-fourth of the natural runoff and half of the NPS load. The baseflow nitrate index (i.e., the ratio of baseflow NO3-N load to total NPS NO3-N load) was 25.4% higher in consecutive dry years than in individual dry years. This study demonstrated that baseflow is the preferential hydrological pathway for NO3-N transport in the HRB and that baseflow delivers a higher NO3-N percentage to streams under long-term drought than under short-term drought. This study highlights the alarming evidence that continuous drought caused by climate change may lead to a higher rate of nitrogen loss in agricultural watersheds.


Author(s):  
Hsien-Chung Lin ◽  
Eugen Solowjow ◽  
Masayoshi Tomizuka ◽  
Edwin Kreuzer

This contribution presents a method to estimate environmental boundaries with mobile agents. The agents sample a concentration field of interest at their respective positions and infer a level curve of the unknown field. The presented method is based on support vector machines (SVMs), whereby the concentration level of interest serves as the decision boundary. The field itself does not have to be estimated in order to obtain the level curve which makes the method computationally very appealing. A myopic strategy is developed to pick locations that yield most informative concentration measurements. Cooperative operations of multiple agents are demonstrated by dividing the domain in Voronoi tessellations. Numerical studies demonstrate the feasibility of the method on a real data set of the California coastal area. The exploration strategy is benchmarked against random walk which it clearly outperforms.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
A. Vargas-Olivares ◽  
O. Navarro-Hinojosa ◽  
M. Maqueo-Vicencio ◽  
L. Curiel ◽  
M. Alencastre-Miranda ◽  
...  

High-intensity focused ultrasound (HIFU) is a minimally invasive therapy modality in which ultrasound beams are concentrated at a focal region, producing a rise of temperature and selective ablation within the focal volume and leaving surrounding tissues intact. HIFU has been proposed for the safe ablation of both malignant and benign tissues and as an agent for drug delivery. Magnetic resonance imaging (MRI) has been proposed as guidance and monitoring method for the therapy. The identification of regions of interest is a crucial procedure in HIFU therapy planning. This procedure is performed in the MR images. The purpose of the present research work is to implement a time-efficient and functional segmentation scheme, based on the watershed segmentation algorithm, for the MR images used for the HIFU therapy planning. The achievement of a segmentation process with functional results is feasible, but preliminary image processing steps are required in order to define the markers for the segmentation algorithm. Moreover, the segmentation scheme is applied in parallel to an MR image data set through the use of a thread pool, achieving a near real-time execution and making a contribution to solve the time-consuming problem of the HIFU therapy planning.


2018 ◽  
Vol 11 (11) ◽  
pp. 6169-6188 ◽  
Author(s):  
Anna Solvejg Dinger ◽  
Kerstin Stebel ◽  
Massimo Cassiani ◽  
Hamidreza Ardeshiri ◽  
Cirilo Bernardo ◽  
...  

Abstract. In atmospheric tracer experiments, a substance is released into the turbulent atmospheric flow to study the dispersion parameters of the atmosphere. That can be done by observing the substance's concentration distribution downwind of the source. Past experiments have suffered from the fact that observations were only made at a few discrete locations and/or at low time resolution. The Comtessa project (Camera Observation and Modelling of 4-D Tracer Dispersion in the Atmosphere) is the first attempt at using ultraviolet (UV) camera observations to sample the three-dimensional (3-D) concentration distribution in the atmospheric boundary layer at high spatial and temporal resolution. For this, during a three-week campaign in Norway in July 2017, sulfur dioxide (SO2), a nearly passive tracer, was artificially released in continuous plumes and nearly instantaneous puffs from a 9 m high tower. Column-integrated SO2 concentrations were observed with six UV SO2 cameras with sampling rates of several hertz and a spatial resolution of a few centimetres. The atmospheric flow was characterised by eddy covariance measurements of heat and momentum fluxes at the release mast and two additional towers. By measuring simultaneously with six UV cameras positioned in a half circle around the release point, we could collect a data set of spatially and temporally resolved tracer column densities from six different directions, allowing a tomographic reconstruction of the 3-D concentration field. However, due to unfavourable cloudy conditions on all measurement days and their restrictive effect on the SO2 camera technique, the presented data set is limited to case studies. In this paper, we present a feasibility study demonstrating that the turbulent dispersion parameters can be retrieved from images of artificially released puffs, although the presented data set does not allow for an in-depth analysis of the obtained parameters. The 3-D trajectories of the centre of mass of the puffs were reconstructed enabling both a direct determination of the centre of mass meandering and a scaling of the image pixel dimension to the position of the puff. The latter made it possible to retrieve the temporal evolution of the puff spread projected to the image plane. The puff spread is a direct measure of the relative dispersion process. Combining meandering and relative dispersion, the absolute dispersion could be retrieved. The turbulent dispersion in the vertical is then used to estimate the effective source size, source timescale and the Lagrangian integral time. In principle, the Richardson–Obukhov constant of relative dispersion in the inertial subrange could be also obtained, but the observation time was not sufficiently long in comparison to the source timescale to allow an observation of this dispersion range. While the feasibility of the methodology to measure turbulent dispersion could be demonstrated, a larger data set with a larger number of cloud-free puff releases and longer observation times of each puff will be recorded in future studies to give a solid estimate for the turbulent dispersion under a variety of stability conditions.


2020 ◽  
Vol 5 (3) ◽  
pp. 309-319
Author(s):  
Christopher Traenka ◽  
Henrik Gensicke ◽  
Sabine Schaedelin ◽  
Andreas Luft ◽  
Marcel Arnold ◽  
...  

Introduction The type of antithrombotic treatment in cervical artery dissection patients is still a matter of debate. Most physicians prefer anticoagulants over antiplatelet agents for stroke prevention. However, this approach is not evidence-based and antiplatelets might be as safe and as effective. The ‘Biomarkers and Antithrombotic Treatment in Cervical Artery Dissection’ (‘TREAT-CAD’) trial (clinicaltrials.gov: NCT02046460) compares Aspirin to oral anticoagulants (vitamin K antagonists) with regard to efficacy and safety by using both clinical and imaging surrogate outcome measures. TREAT-CAD tests the hypothesis, that aspirin is as safe and effective as vitamin K antagonists. Patients and methods TREAD-CAD is a Prospective, Randomised controlled, Open-labelled, multicentre, non-inferiority trial with Blinded assessment of outcome Events (PROBE-design). Key eligibility criteria are (i) clinical symptoms attributable to cervical artery dissection and (ii) verification of the cervical artery dissection diagnosis by established magnetic resonance imaging criteria. Patients are randomised to receive either Aspirin 300 mg daily or vitamin K antagonists for 90 days. Results Primary outcomes are assessed at 14 ± 10 days (magnetic resonance imaging and clinical examination) and at 90 ± 30 days (clinical examinations). The primary endpoint is a composite outcome measure – labelled Cerebrovascular Ischemia, major Hemorrhagic events or Death (CIHD) – and includes (i) occurrence of any stroke (including retinal infarction), (ii) new ischaemic lesions on diffusion-weighted magnetic resonance imaging, (iii) any major extracranial haemorrhage, (iv) any symptomatic intracranial haemorrhage, (v) any new haemorrhagic lesion visible on paramagnetic-susceptible sequences and (vi) death. Discussion After database closure, (i) central verification of cervical artery dissection diagnosis will be done by two experienced raters, (ii) adjudication of outcome events will be performed by independent adjudication committees, separately for clinical and imaging outcomes. The primary analysis will be done on the per protocol data set. The targeted sample size consists of 169 evaluable patients in the per protocol data set. Conclusion TREAT-CAD is testing the non-inferiority of Aspirin versus vitamin K antagonists treatment in patients with symptomatic cervical artery dissection by combined clinical and magnetic resonance imaging outcomes.


2003 ◽  
Vol 19 (8) ◽  
pp. 956-965 ◽  
Author(s):  
Y. D. He ◽  
H. Dai ◽  
E. E. Schadt ◽  
G. Cavet ◽  
S. W. Edwards ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document