Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling

Author(s):  
Madhusudan Iyengar ◽  
Roger Schmidt ◽  
Arun Sharma ◽  
Gerard McVicker ◽  
Saurabh Shrivastava ◽  
...  

Data center equipment almost always represents a high expenditure capital investment to the customer, and is often operated without any down time. Data com equipment is typically designed to operate at a rack air inlet temperature of between 10 and 35°C, and a violation of this specification can diminish electronic device reliability and even lead to failure in the field. Thus, it is of paramount importance, from a reliability perspective, to sufficiently understand these systems. A representative non-raised floor data center system was numerically modeled and the data generated from a parametric study was analyzed. The model constitutes a half symmetry section of a 40 rack data center that is arranged in a cold aisle-hot aisle fashion. The effect of several input variables, namely, rack heat load, rack flow rate, rack temperature rise, diffuser flow rate, diffuser location, diffuser height, diffuser pitch, ceiling height, hot exhaust air return vent location, and non-uniformity in rack heat load, was studied. Temperature data was collected at several locations at the inlet to the racks. Statistical analysis was carried out to describe trends in the data.

Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Russell Tipton ◽  
Bruce Murray ◽  
Bahgat G. Sammakia ◽  
...  

The heat dissipated by high performance IT equipment such as servers and switches in data centers is increasing rapidly, which makes the thermal management even more challenging. IT equipment is typically designed to operate at a rack inlet air temperature ranging between 10 °C and 35 °C. The newest published environmental standards for operating IT equipment proposed by ASHARE specify a long term recommended dry bulb IT air inlet temperature range as 18°C to 27°C. In terms of the short term specification, the largest allowable inlet temperature range to operate at is between 5°C and 45°C. Failure in maintaining these specifications will lead to significantly detrimental impacts to the performance and reliability of these electronic devices. Thus, understanding the cooling system is of paramount importance for the design and operation of data centers. In this paper, a hybrid cooling system is numerically modeled and investigated. The numerical modeling is conducted using a commercial computational fluid dynamics (CFD) code. The hybrid cooling strategy is specified by mounting the in row cooling units between the server racks to assist the raised floor air cooling. The effect of several input variables, including rack heat load and heat density, rack air flow rate, in row cooling unit operating cooling fluid flow rate and temperature, in row coil effectiveness, centralized cooling unit supply air flow rate, non-uniformity in rack heat load, and raised floor height are studied parametrically. Their detailed effects on the rack inlet air temperatures and the in row cooler performance are presented. The modeling results and corresponding analyses are used to develop general installation and operation guidance for the in row cooler strategy of a data center.


2020 ◽  
Vol 859 ◽  
pp. 301-306
Author(s):  
Nattakanwadee Khumpirapang ◽  
Supreeya Srituptim ◽  
Worawut Kriangkrai

Garlic exerts its pharmacological activities; antihyperglycemic, antihyperlipidemia, antihypercholesterolemic, and antihypertensive activity. Therefore, the aim of this study was to determine and optimize the influence of the individual and interactive effect of process conditions variables on the yield of garlic extract powders by three factors and three level-Box-Behnken design under response surface methodology. Spray drying processes the transformation of a garlic juice extract into a dried powder, where usually maltodextrin (MD) as a drying agent is used. According to experimental design, the mixing of garlic juice extract (85 – 95 %w/w) and MD (5 – 15 %w/w) were dried at an air inlet temperature 110°C - 150°C and liquid feed flow rate 5 – 35 rpm. The optimum spray-drying process conditions which maximized the yield of garlic extract powder (31%w/w) were found as follows: air inlet temperature of 150°C, the liquid feed flow rate of 16 rpm, and 5 %w/w MD. The experimental values slightly closed to the corresponding predicted values. Hence, the developed model was adequate and possible to use.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Richard Eiland ◽  
John Edward Fernandes ◽  
Marianna Vallejo ◽  
Ashwin Siddarth ◽  
Dereje Agonafer ◽  
...  

Complete immersion of servers in dielectric mineral oil has recently become a promising technique for minimizing cooling energy consumption in data centers. However, a lack of sufficient published data and long-term documentation of oil immersion cooling performance make most data center operators hesitant to apply these approaches to their mission critical facilities. In this study, a single server was fully submerged horizontally in mineral oil. Experiments were conducted to observe the effects of varying the volumetric flow rate and oil inlet temperature on thermal performance and power consumption of the server. Specifically, temperature measurements of the central processing units (CPUs), motherboard (MB) components, and bulk fluid were recorded at steady-state conditions. These results provide an initial bounding envelope of environmental conditions suitable for an oil immersion data center. Comparing with results from baseline tests performed with traditional air cooling, the technology shows a 34.4% reduction in the thermal resistance of the system. Overall, the cooling loop was able to achieve partial power usage effectiveness (pPUECooling) values as low as 1.03. This server level study provides a preview of possible facility energy savings by utilizing high temperature, low flow rate oil for cooling. A discussion on additional opportunities for optimization of information technology (IT) hardware and implementation of oil cooling is also included.


2018 ◽  
Vol 140 (1) ◽  
Author(s):  
Jayati Athavale ◽  
Yogendra Joshi ◽  
Minami Yoda

Abstract This paper presents an experimentally validated room-level computational fluid dynamics (CFD) model for raised-floor data center configurations employing active tiles. Active tiles are perforated floor tiles with integrated fans, which increase the local volume flow rate by redistributing the cold air supplied by the computer room air conditioning (CRAC) unit to the under-floor plenum. The numerical model of the data center room consists of one cold aisle with 12 racks arranged on both sides and three CRAC units sited around the periphery of the room. The commercial CFD software package futurefacilities6sigmadcx is used to develop the model for three configurations: (a) an aisle populated with ten (i.e., all) passive tiles; (b) a single active tile and nine passive tiles in the cold aisle; and (c) an aisle populated with all active tiles. The predictions from the CFD model are found to be in good agreement with the experimental data, with an average discrepancy between the measured and computed values for total flow rate and rack inlet temperature less than 4% and 1.7 °C, respectively. The validated models were then used to simulate steady-state and transient scenarios following cooling failure. This physics-based and experimentally validated room-level model can be used for temperature and flow distributions prediction and identifying optimal number and locations of active tiles for hot spot mitigation in data centers.


Author(s):  
Veerendra Mulay ◽  
Saket Karajgikar ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Madhusudan Iyengar

The power trend for Server systems continues to grow thereby making thermal management of Data centers a very challenging task. Although various configurations exist, the raised floor plenum with Computer Room Air Conditioners (CRACs) providing cold air is a popular operating strategy. The air cooling of data center however, may not address the situation where more energy is expended in cooling infrastructure than the thermal load of data center. Revised power trend projections by ASHRAE TC 9.9 predict heat load as high as 5000W per square feet of compute servers’ equipment footprint by year 2010. These trend charts also indicate that heat load per product footprint has doubled for storage servers during 2000–2004. For the same period, heat load per product footprint for compute servers has tripled. Amongst the systems that are currently available and being shipped, many racks exceed 20kW. Such high heat loads have raised concerns over limits of air cooling of data centers similar to air cooling of microprocessors. A hybrid cooling strategy that incorporates liquid cooling along with air cooling can be very efficient in these situations. A parametric study of such solution is presented in this paper. A representative data center with 40 racks is modeled using commercially available CFD code. The variation in rack inlet temperature due to tile openings, underfloor plenum depths is reported.


Author(s):  
Ahmet Topal ◽  
Onder Turan

AbstractExergy efficiencies of the gas turbine become an important issue in recent years and by the way conducted studies regarding to this subject shows that the highest exergy destruction is observed in the combustor and afterburner modules. Therefore it is beneficial to perform analyses that are specific to the combustor exergy efficiency. This study includes the energy$\left( {{\eta _{cc}}} \right)$and exergy efficiencies$\left( {{\eta _{ex}}} \right)$(thermo-efficiencies) of a tubular combustor for different inlet conditions. Both of the first law and second law efficiencies have been performed on the experimental data and efficiency trends are investigated for changing aerodynamic conditions. Combustor tests have been conducted in an atmospheric test rig and combustor air inlet temperature$\left( {{T_{03}}} \right)$, air mass flow rate$\left( {{{\dot m}_a}} \right)$and fuel mass flow rate$\left( {{{\dot m}_f}} \right)$have been set for the pre-defined conditions. Moreover, exhaust gas emissions were measured by using a gas analyzer system. In the study, highest energy and exergy efficiencies have been obtained at minimum aerodynamic loading condition as 99.0 % and 70.2 % respectively. Moreover efficiencies have the lowest value as 92.7 % and 54.0 % at the maximum aerodynamic loading condition. To summarize, this study aims to show the energy and exergy trends by changing inlet conditions of a tubular combustor in the atmospheric test rig.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Dustin W. Demetriou ◽  
H. Ezzat Khalifa

This paper expands on the work presented by Demetriou and Khalifa (Demetriou and Khalifa, 2013, “Thermally Aware, Energy-Based Load Placement in Open-Aisle, Air-Cooled Data Centers,” ASME J. Electron. Packag., 135(3), p. 030906) that investigated practical IT load placement options in open-aisle, air-cooled data centers. The study found that a robust approach was to use real-time temperature measurements at the inlet of the racks to remove IT load from the servers with the warmest inlet temperature. By considering the holistic optimization of the data center load placement strategy and the cooling infrastructure optimization, for a range of data center IT utilization levels, this study investigated the effect of ambient temperatures on the data center operation, the consolidation of servers by completely shutting them off, a complementary strategy to those presented by Demetriou and Khalifa (Demetriou and Khalifa, 2013, “Thermally Aware, Energy-Based Load Placement in Open-Aisle, Air-Cooled Data Centers,” ASME J. Electron. Packag., 135(3), p. 030906) for increasing the IT load beginning with servers that have the coldest inlet temperature and finally the development of load placement rules via either static (i.e., during data center benchmarking) or dynamic (using real-time data from the current thermal environment) allocation. In all of these case studies, by using a holistic optimization of the data center and associated cooling infrastructure, a key finding has been that a significant amount of savings in the cooling infrastructure's power consumption is seen by reducing the CRAH's airflow rate. In many cases, these savings can be larger than providing higher temperature chilled water from the refrigeration units. Therefore, the path to realizing the industry's goal of higher IT equipment inlet temperatures to improve energy efficiency should be through both a reduction in air flow rate and increasing supply air temperatures and not necessarily through only higher CRAH supply air temperatures.


Author(s):  
Uschas Chowdhury ◽  
Walter Hendrix ◽  
Thomas Craft ◽  
Willis James ◽  
Ankit Sutaria ◽  
...  

Abstract In a data center, electronic equipment such as server and switches dissipate heat and the corresponding cooling systems contribute to typically 25–35% of total energy consumption. The heat load continues to increase as there is a greater need for miniaturization and convergence. In 2014, data centers in the U.S. consumed an estimated 70 billion kWh, representing about 1.8% of total U.S. electricity consumption. Based on current trend estimates, U.S. data centers are projected to consume approximately 73 billion kWh in 2020 [1]. Many research and strategies are adopted to minimize energy cost. The recommended dry bulb temperature for long-term operation and reliability for air cooling is between 18–27°C and the largest allowable inlet temperature range to operate at is between 5°C and 45°C with American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) enabling much broader allowable zones) [2]. But understanding a proper cooling system is very important especially for thermal management of IT equipment with high heat loads such as 1U or 2U multi-core, high-end servers and blade servers which provide more computing per watt. Many problems like high inlet temperature due to the mixing of hot air with cold air, local hot spots, lower system reliability, increased failure, and downtime may occur. Among many other approaches to managing high-density racks, in-row coolers are used in between racks to provide cold air and minimize local hot spots. This paper describes a computational study being performed by applying in-row coolers for different rack power configuration with and without aisle containment. The power, as well as the number of racks, are varied to study the effect of raised inlet temperature for the IT equipment in a Computational Fluid Dynamics (CFD) model developed in 6SigmaRoom with the help of built-in library items. A comparative analysis is also performed for a typical small-sized non-raised facility to investigate the efficacy and limitations of in-row coolers in thermal management of IT equipment with variation in rack heat load and containment. Several other aspects like a parametric study of variable opening areas of duct between racks and in-row coolers, the variation of operating flow rate and failure scenarios are also studied to find proper flow distribution, uniformity of outlet temperature and predict better performance, energy savings and reliability. The results are presented for general guidance for flexible and quick installation and safe operation of in-row coolers to improve thermal efficiency.


1986 ◽  
Vol 108 (3) ◽  
pp. 684-692 ◽  
Author(s):  
E. Van den Bulck ◽  
J. W. Mitchell ◽  
S. A. Klein

The use of rotary dehumidifiers in gas-fired open-cycle desiccant cooling systems is investigated by analyzing the performance of the rotary heat exchanger–rotary dehumidifier subsystem. For a given cooling load, the required regeneration heat supply can be minimized by choosing appropriate values for the regeneration air mass flow rate and the wheel rotation speed. A map is presented showing optimal values for rotational speed and regeneration flow rate as functions of the regeneration air inlet temperature and the process air inlet humidity ratio. This regeneration temperature is further optimized as a function of the process humidity ratio. In the analysis, the control strategy adjusts the process air mass flow rate to provide the required cooling load. Additional control options are considered and the sensitivity of the regeneration heat required to the wheel speed, regeneration air mass flow rate, and inlet temperature is discussed. Experimental data reported in the literature are compared with the analytical results and indicate good agreement.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luiz C. Corrêa-Filho ◽  
Maria M. Lourenço ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them,β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process ofβ-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higherβ-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study ofβ-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.


Sign in / Sign up

Export Citation Format

Share Document