scholarly journals The Effect of Microstructural Change on Fracture Behavior in Heat-Affected Zone of API 5L X65 Pipeline Steel

Author(s):  
Jang-Bog Ju ◽  
Jae-il Jang ◽  
Woo-sik Kim ◽  
Dongil Kwon

Reliability evaluation of welded structures by mechanical testing of weld heat-affected zones (HAZs) has become general practice throughout the world. HAZs of steel welded joints show a gradient of microstructure from the fusion line to the unaffected base metal. This study is concerned with a correlation between the microstructural change and the fracture characteristics in HAZs of both seam and girth welds of API 5L X65 pipeline steel, which is generally used for natural gas transmission pipelines in Korea. The focus in present study was the investigation of macroscopic fracture behavior of the various regions within HAZ. Changes in microstructure and impact toughness were observed using synthetic HAZ specimens as well as actual HAZ specimens. To evaluate the macroscopic toughness of actual HAZ, Charpy V-notch impact test was performed.

2013 ◽  
Vol 768-769 ◽  
pp. 272-279
Author(s):  
Mario Stefenelli ◽  
Angelika Riedl ◽  
Juraj Todt ◽  
Matthias Bartosik ◽  
Rostislav Daniel ◽  
...  

Fracture behavior of hard nanocrystalline coatings decisively influences the lifetime and performance of coated tools. In this work, residual stresses in as-deposited and annealed CrN coatings deposited at 350 °C using bias voltages of −40 V and −120 V were evaluated using synchrotron X-ray diffraction coupled with four-point bending. The stress development during the bending experiments was used to analyse fracture properties of the coatings. The results indicate that an annealing at 550 °C does not deteriorate the fracture behavior of the coatings prepared using −40 V bias. In the case of −120 V bias coatings, the residual stress relaxation after the thermal treatment is accompanied by a fracture strain decrease and a fracture stress increase. The as-deposited and annealed CrN coatings deposited using −120 V bias exhibit significantly large fracture strains in comparison with −40 V samples. Finally the results document that the fracture stress may not be the only relevant parameter when comparing different coating systems. Also the strain at fracture can be considered as significant indicator of the coating fracture response. Methodologically, the results indicate that in-situ X-ray diffraction coupled with four point bending can be effectively used to evaluate macroscopic fracture behaviour of hard coatings.


Author(s):  
Nikhil Gupta ◽  
Eyassu Woldesenbet

Abstract Close cell structured foams are made by incorporation of cenospheres in polymeric materials. Low moisture absorption characteristics and considerably higher compressive strength of these materials compared to open cell structured foams make them suitable for use as core materials in sandwich structured materials. Incorporation of cenospheres in the epoxy resins enhances their impact strength and damage tolerance, especially if these materials are used in sandwich configurations. Present study analyzes and compares the effect of incorporation of cenospheres like flyash and glass microballoons in the epoxy resins on the deformation and fracture behavior of the material. Approach based on determination of local stress intensity factors is used to obtain estimate of the stresses in the material.


Author(s):  
Woo-sik Kim ◽  
Jong-hyun Baek ◽  
Choel-man Kim ◽  
Young-pyo Kim

The following cases of girth welded region between pipelines having different base strength were considered. The pipeline shows different fracture behavior from girth welded pipeline between similar materials due to strength mismatch and residual stress distribution. Investigation about the residual stress distribution and fracture behavior of pipeline having girth welds of the differnet base metals (X70/X65 and X70/X42) with different material property has performed using finite element analysis. The effect of mismatched material property on girth weld region is negligible when shape of pipeline is similar. The assessment for occurance of crack on girth weld region with pipes with material property mismatched can be replaced by that of the similar pipes with low strength on the point view of conservation.


Author(s):  
Youn-Young Jang ◽  
Ji-Hee Moon ◽  
Nam-Su Huh ◽  
Ki-Seok Kim ◽  
Woo-Yeon Cho ◽  
...  

Abstract This paper is aimed to characterize ductile and cleavage fracture behavior of API X70 pipeline steel and investigate applicability of a micro-damage mechanics model to simulate static and dynamic crack propagation of single-edge notched tension (SENT) and drop-weight tear test (DWTT) specimens, as well as a local approach to describe cleavage fracture behavior. Gurson-Tvergaard-Needleman (GTN) model was applied to simulate ductile fracture behavior of SENT and DWTT specimens, where GTN model has been widely known for well-established model to characterize micro-damage process of void nucleation, growth and coalescence. As for a local approach, Beremin model was considered to estimate probability of cleavage fracture. In this regard, this study was especially focused on abnormal fracture appearance of DWTT specimen. In the present study, firstly, experiment data from tensile specimen test was used to obtain plastic flow curve (i.e. stress and strain curve). And load-CMOD and J-integral/CTOD resistance curves obtained from SENT test were used to characterize static ductile fracture and calibrate GTN model parameters for X70 pipeline steel. And the calibrated GTN model parameters were verified by comparing experiment data from DWTT test such as load-displacement and crack length-time curves with those from FE analysis. To accommodate dynamic effect on material properties, rate-dependent stress-strain curves were considered in FE analyses. To describe cleavage fracture, the Weibull stress was calculated from FE analyses of DWTT and Weibull parameters were calibrated by comparing with probability distribution of cleavage fracture from experiment data of DWTT specimen. Using Weibull parameters, the whole of cleavage fracture probability can be estimated as ductile shear area of DWTT specimen increases.


2020 ◽  
Vol 179 ◽  
pp. 105627 ◽  
Author(s):  
Yuguang Cao ◽  
Ying Zhen ◽  
Ming Song ◽  
Haijiao Yi ◽  
Fagen Li ◽  
...  

2010 ◽  
Vol 34-35 ◽  
pp. 636-640 ◽  
Author(s):  
Meng Yi Zhu ◽  
Bo Han Liu ◽  
Yue Ting Sun ◽  
Jun Xu ◽  
Xue Feng Yao ◽  
...  

The dynamic fracture behavior of PVB laminated glass during impact has been studied by both theoretic and finite element approaches. To make the analysis of cracking on PVB laminated glass more accurate and direct, high-speed photography method is introduced in this paper. Different crack patterns as well as their sequences of appearance are visualized. Finally, typical crack is measured in order to obtain important fracture characteristics such as crack velocity and acceleration.


Author(s):  
Guodong Zhang ◽  
Xuejun Bai ◽  
Douglas Stalheim ◽  
Shaopo Li ◽  
Wenhua Ding

Along with the increasing demand of oil and natural gas by various world economies, the operating pressure of the pipeline is also increasing. Large diameter heavy wall X80 pipeline steel is widely used in the long distance high pressure oil and gas transportation in China today. In addition, development of X90/X100 has begun in earnest to support the growing energy needs of China. With the wide use of X80 steels, the production technology of this grade has become technically mature in the industry. Shougang Group Qinhuangdao Shouqin Metal Materials Co., Ltd. (SQS) since 2008 has been steadily developing heavier thicknesses and wider plate widths over the years. This development has resulted in stable mass production of X80 pipeline steel plate in heavy wall thicknesses for larger pipe OD applications. The technical specifications of X80 heavy wall thickness and X90/X100 14.8–19.6 mm wall thicknesses, large OD (48″) requiring wide steel plates for the 3rd West-to-East Natural Gas Transmission Pipeline Project and the third line of Kazakhstan-China Main Gas Pipeline (The Middle Asia C Line) and the demonstration X90/X100 line (part of the 3rd West-East Project) in China required changes to the SQS plate mill process design. Considering the technology capability of steelmaking and the plate mill in SQS, a TMCP+OCP (Optimized Cooling Process) was developed to achieve stable X80 and X90/X100 mechanical properties in the steel plates while reducing alloy content. This paper will describe the chemistry, rolling process, microstructure and mechanical properties of X80 pipeline steel plates produced by SQS for 52,000 mT of for the 3rd West-to-East Natural Gas Transmission Pipeline Project and 5,000 mT for the Middle Asia C Line Project along with 1000 tons of 16.3 mm X90/X100 for the 3rd West-East demonstration pipeline. The importance of the slab reheating process and rolling schedule will be discussed in the paper. In addition, the per pass reductions logic used during recrystallized rough rolling, and special emphasis on the reduction of the final roughing pass prior to the intermediate holding (transfer bar) resulting in a fine uniform prior austenite microstructure will be discussed. The optimized cooling (two phase cooling) application after finish rolling guarantees the steady control of the final bainitic microstructure with optimum MA phase for both grades. The plates produced by this process achieved good surface quality, had excellent flatness and mechanical properties. The pipes were produced via the JCOE pipe production process and had favorable forming properties and good weldability. Plate mechanical properties successfully transferred into the required final pipe mechanical properties. The paper will show that the TMCP+OCP produced X80 heavy wall and 16.3 mm X90 wide plates completely meet the technical requirements of the three pipeline projects.


2012 ◽  
Vol 197 ◽  
pp. 798-801
Author(s):  
Yu Rong Jiang ◽  
Mei Bao Chen

It is impossible to keep pipelines free from defects in the manufacturing, installation and servicing processes. In this paper, pre-tension deformation of X60 pipeline steel was employed to experimentally simulate the influence of dents and the mechanism of fatigue crack initiation of X60 pipeline steel after per-tension deformation under cyclic loading were investigated. The results indicate that the mechanism of fatigue crack initiation is the typical cleavage fracture characteristics and the cracks mainly initiates from the non-metallic inclusions which was the local brittle fracture materials such as MnS inclusion. With the pre-tension deformation increase, the yield strength of the matrix was increased and the toughness decreased due to the work-hardening effect. With the effects of the non-metallic inclusions larger, the fatigue cracks initiated from the non-metallic inclusions easier.


2012 ◽  
Vol 602-604 ◽  
pp. 448-451
Author(s):  
Biao Guo ◽  
Sui Cai Zhang ◽  
Chuan Shui Sun ◽  
Chang Chun Ge

Sintered and forged powder metallurgy (P/M) steels were subjected to tensile, hardness and impact test, in order to understand the influence of the microstructure on the mechanical properties and fracture behavior. Ultimate tensile strength, yield strength, elongation, reduction in area, hardness and impact toughness all increase with a decrease in porosity. With the increase of density, the mode of fracture change from pure ductile in sintered necks of the material to complete brittle from fully dense pearlitic grains.


Sign in / Sign up

Export Citation Format

Share Document