Correlating Corrosion Field Data With Experimental Findings for the Development of Pipeline Mitigation Strategies

Author(s):  
Karina Chevil ◽  
Weixing Chen ◽  
Greg Van Boven ◽  
Richard Kania ◽  
Jenny Been

Coating disbondment on pipelines is a common phenomenon that leads to exposure of the pipeline metal to ground water solutions, promoting a corrosive environment which is associated with stress corrosion cracking (SCC). This investigation aims to understand the corrosion behavior and rate of pipeline steel under coating disbondments of varying sizes based on field data and experimental studies. In the analysis of the field data, dig reports provided by a Canadian gas transportation company were analyzed for cases of anaerobic corrosion under tape coatings. The analyzed field data provided a correlation between the tape coating disbondment size and corrosion rate found under the coating. The experimental studies aimed to understand the field findings. The analyses were performed on X-65 pipeline steel coupons placed in a vertical coupon holder with a PMMA shielding. To imitate the variation in the disbondment size, the gap size between the metal coupons and the shielding was varied (2 mm, 5 mm, and 10 mm, and infinite). The general corrosion rates were obtained through weight loss calculations. The experimental results were compared and correlated with dig-report data from the field for a development of cathodic protection and pipeline mitigation strategies.

Author(s):  
Ieuan Evans ◽  
Jon Heron ◽  
Joseph Murray ◽  
Matthew Hickman ◽  
Gemma Hammerton

Experimental studies support the conventional belief that people behave more aggressively whilst under the influence of alcohol. To examine how these experimental findings manifest in real life situations, this study uses a method for estimating evidence for causality with observational data—‘situational decomposition’ to examine the association between alcohol consumption and crime in young adults from the Avon Longitudinal Study of Parents and Children. Self-report questionnaires were completed at age 24 years to assess typical alcohol consumption and frequency, participation in fighting, shoplifting and vandalism in the previous year, and whether these crimes were committed under the influence of alcohol. Situational decomposition compares the strength of two associations, (1) the total association between alcohol consumption and crime (sober or intoxicated) versus (2) the association between alcohol consumption and crime committed while sober. There was an association between typical alcohol consumption and total crime for fighting [OR (95% CI): 1.47 (1.29, 1.67)], shoplifting [OR (95% CI): 1.25 (1.12, 1.40)], and vandalism [OR (95% CI): 1.33 (1.12, 1.57)]. The associations for both fighting and shoplifting had a small causal component (with the association for sober crime slightly smaller than the association for total crime). However, the association for vandalism had a larger causal component.


2010 ◽  
Vol 32 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Niels van Quaquebeke ◽  
Steffen R. Giessner

Many fouls committed in football (called soccer in some countries) are ambiguous, and there is no objective way of determining who is the “true” perpetrator or the “true” victim. Consequently, fans as well as referees often rely on a variety of decision cues when judging such foul situations. Based on embodiment research, which links perceptions of height to concepts of strength, power, and aggression, we argue that height is going to be one of the decision cues used. As a result, people are more likely to attribute a foul in an ambiguous tackle situation to the taller of two players. We find consistent support for our hypothesis, not only in field data spanning the last seven UEFA Champions League and German Bundesliga seasons, as well as the last three FIFA World Cups, but also in two experimental studies. The resulting dilemma for refereeing in practice is discussed.


1968 ◽  
Vol 12 (03) ◽  
pp. 165-180
Author(s):  
W. H. Chu ◽  
J. F. Dalzell ◽  
J. E. Modisette

This paper summarizes development of a quasi-linear theory for rectangular-type anti-rolling tank and presents results of the ensuing experimental investigation. Theoretical and experimental studies are compared. It was found that the initial theoretical method, although it reflects gross behavior of fluid in the tank and moments exerted on the ship therefrom, should be regarded as the foundation for a better understanding rather than as a design technique. Experimental findings indicate that the antiroll tank is a non-linear control element over its practical range of operation. Development of a nonlinear mathematical representation incorporating empirical results, as necessary, is recommended.


1980 ◽  
Vol 48 (1) ◽  
pp. 147-153 ◽  
Author(s):  
W. Nixon ◽  
A. Pack

Experimental studies have established that alveolar gas exchange is inversely relation to the molecular diffusivity of gas in the lung airways. The mechanism underlying this relationship is, however, unclear. To investigate this phenomenon, the conditions relevant to the experimental studies are simulated using a computational model of pulmonary gas transport. Results from these simulations suggest that the inverse relationship found experimentally can largely be explained on the basis of the intra-acinar stratification of blood flow and gas concentrations. Gas having a relatively low molecular diffusivity is not transported as far into the acinus as gas having a higher diffusivity. When these relative intra-acinar gas distributions interact with the blood flow distribution, which has been shown experimentally to be weighted towards the proximal alveoli, more gas exchange occurs in the low molecular diffusivity mixture. Consideration of the various other mechanisms that have been proposed to explain the experimental findings.he inverse dependence suggests that they are of little significance. In particular, our studies remove the need to invoke Taylor diffusion to explain the experimental findings.


Author(s):  
Robert T. Root ◽  
Robert Sadacca

Two experimental studies are reported that were intended to evaluate alternative man-computer communication techniques within the context of a computer-based image interpretation facility. The first experiment, comparing five different data entry procedures, indicated that, although a procedure requiring the interpreter to enter report data directly using a teletype keyboard resulted in the shortest overall throughput time, a procedure involving message composition by the image interpreter with subsequent transcription by a communicator minimizes the time spent by the interpreter in report generation and maximizes the time available for the detection and identification of targets on aerial imagery. The second experiment evaluating alternative word form-data entry format combinations, showed no differences among the six combinations studied.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 160 ◽  
Author(s):  
Ali Hilo ◽  
Abd Rahim Abu Talib ◽  
Sadeq R. Nfawa ◽  
Mohamed Thariq Hameed Sultan ◽  
Mohd Faisal Abdul Hamid

Nanofluids are considered to offer significant advantages as thermodynamic fluids because of their admirable properties on thermal conduction, thermal convection, boiling heat transfer and stability. This paper presents numerous researches focusing on the improvement of heat transfer via facing step and corrugated channels using nanofluids and without it. Exploration on the convective heat transfer was done through numerical modeling. It was reported that experimental studies were carried out in corrugated and facing step channels through the application of nanofluids and conventional fluids for heat transfer enhancement. The turbulent and laminar flows along corrugated and facing step channels have been presented. The numerical and experimental findings in maximizing the heat transfer rate are in accord. Comparisons between thermal conductivity measurement methods were done. Innovative design of corrugated facing step channel is being proposed. The heat transfer enhancements reach 60% by using facing step channel under laminar flow with nanofluid. The dimensions of new channel such as height and width of the baffle, the height of the step, shape and height of corrugated are needed to compare that might to provide the ideal rate of heat transfer.  


2009 ◽  
Vol 156-158 ◽  
pp. 173-180 ◽  
Author(s):  
Nicholas S. Bennett ◽  
Chihak Ahn ◽  
Nicholas E.B. Cowern ◽  
Peter Pichler

We present a review of both theoretical and experimental studies of stress effects on the solubility of dopants in silicon and silicon-germanium materials. Critical errors and limitations in early theory are discussed, and a recent treatment incorporating charge carrier induced lattice strain and correct statistics is presented. Considering all contributing effects, the strain compensation energy is the primary contribution to solubility enhancement in both silicon and silicon-germanium for dopants of technological interest. An exception is the case of low-solubility dopants, where a Fermi level contribution is also found. Explicit calculations for a range of dopant impurities in Si are presented that agree closely with experimental findings for As, Sb and B in strained Si. The theoretical treatment is also applied to account for stress effects in strained SiGe structures, which also show close correlation with recently derived experimental results for B-doped strained SiGe which are presented here for the first time.


2016 ◽  
Vol 67 (6) ◽  
pp. 660-666 ◽  
Author(s):  
J. Ruppert ◽  
F. Frimmel ◽  
R. Baier ◽  
G. Binder
Keyword(s):  

2010 ◽  
Vol 24 (12n13) ◽  
pp. 2053-2071
Author(s):  
N. Giordano

A brief and selective review of experimental studies of electrical conduction in thin metal wires and films at low temperatures is given. This review will illustrate the importance of various length scales and of dimensionality in determining the properties disordered metals. A few intriguing and still unresolved experimental findings are also mentioned.


2013 ◽  
Vol 743-744 ◽  
pp. 589-596 ◽  
Author(s):  
Meng Liu ◽  
Jian Qiu Wang ◽  
Wei Ke

The corrosion behavior of X52 pipeline steel in H2S solutions was investigated through immersion corrosion test which was carried out in a high temperature and high pressure autoclave at different temperatures and H2S concentrations. General corrosion rates were calculated based on the weight loss of samples. The morphology and the chemical composition of the corrosion products were obtained by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The crystal structure of corrosion products was analyzed by X-Ray diffraction patterns (XRD). The corrosion products consisted mainly of the sulfide compounds (mackinawite, cubic ferrous sulfide, troilite and pyrrhotite). The corrosion products included two layers: the inner iron-rich layer and the outer sulfur-rich layer. Under H2S concentrations of 27g/L, the corrosion rate increased with the increase of temperature up to 90°C and then decreased at 120°C, finaly increased again. The corrosion rate first increased with H2S concentrations then decreased at 120°C. The structure and stability of the corrosion products due to different corrosion mechanism had a major impact on the corrosion rate. The corrosion resistance of the corrosion products increased as follows: mackinawite < cubic ferrous sulfide < troilite < pyrrhotite.


Sign in / Sign up

Export Citation Format

Share Document