Acoustic Beamforming Enhancement of Locomotive Cabin Speech

Author(s):  
Karl Muecke ◽  
Steve C. Southward

The noisy and monotonous environment of a locomotive cabin is certainly not conducive to clear communication or to high levels of crew alertness. Both of these problems have a negative impact on the operational safety of the locomotive. In this paper, an acoustic beamforming system is developed and evaluated for enhancing the speech signals measured in a locomotive cabin. Higher signal-to-noise ratio (SNR) speech signals can significantly improve communication as well as enable the use of speech-based alertness detection methods. Acoustic beamforming utilizes a spatially distributed array of low-cost microphones permanently mounted in the locomotive cabin trim, with a digital signal processing algorithm to effectively create a focused directional microphone which can be pointed at any crew member in the cabin. Preliminary experimental testing of this system in a green truck cabin has been successful, even with very high levels of noise.

Author(s):  
Alejandro D. Martinez R. ◽  
On behalf of DarkSide Collaboration

This paper presents real-time digital filter algorithms to be applied within dark matter and neutrino measurements. The digital signal processing algorithm implements a trapezoidal pulse-shaper programmed on FPGA at 125 MHz. The real-time filter algorithm enhances the SNR of a digitized signal from a photo detection module (SiPM, cryogenic front-end electronics & 14-bits ADC). The trapezoidal filter upgrades the signal to noise ratio (SNR) from 10.4 to 15.4 with a total increment of 50%. The total on-chip power is 0.198 W.


Author(s):  
Dr. Anita Pati

Abstract: Now a days there are many people affected by hearing loss that make them disabled as they cannot communicate properly .The main complaint of people with hearing loss is low ability to deduce speech in a noisy environment. Hearing aid is a delicate instrument, which can acquire, process and feedback realistic signal in real time. In this matter various apparent opposition matching algorithm, various filtering methods, digital signal processing algorithm and echo cancellation are developed and implemented. The purpose of this object is to develop the digital signal processing based platform for digital hearing aid technique, which is for the people with hearing impairment using the low cost fuzzy orange pi model. To Perform this Application fuzzy algorithm is used which is quite easy to implement and required less operative computation. The algorithms are performed using MATLAB language which gives the best clarity and simulated functionality over MATLAB. Keywords: Speech Recognition, Noise Reduction, SNR, Fuzzy Masking Technique


2013 ◽  
Vol 404 ◽  
pp. 555-559 ◽  
Author(s):  
Ke Zhao ◽  
Jian Hua Jiang ◽  
Jun Fang Fu ◽  
Jin Bo Xu

This paper introduces the MSP430 MCU-based near-infrared spectrometer front-end signal extraction and software signal processing design.The system adopts phase locked loop technology to signal phase shift processing. Phase sensitive filtering function achieved by the balance modem AD630.Finally the analog signal is converted to digital signal by AD7715 for the microprocessor processed.Microprocessor receives digital signal, filter processing is performed using a first order lag filter method to determine the point of measurement value.Through the comparison analysis of the experimental testing result, the program has higher signal-to-noise ratio and suppress interference ability, high reliability, good stability,etc.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3967
Author(s):  
Ignas Daugela ◽  
Jurate Suziedelyte Visockiene ◽  
Jurate Kumpiene ◽  
Ivan Suzdalev

Global warming, as the result of the negative impact of humans on climate change, has been observed based on various data sources. Various measures have aimed to reduce anthropogenic factors, and also to lower carbon dioxide (CO2) and methane CH4 emissions. One of the main contributors to anthropogenic factors is organic waste in municipal solid waste landfills. There are many landfills where cost-effective rapid technologies for the identification and quantification of CH4 emission sites are not applied. There is still a need for the development of accessible and cost-effective methods that react in a real-time manner for the rapid detection and monitoring of methane emissions. This paper’s main goal is to create a prototype sensor suitable for operational measurement of the gas value, suitable for integration into geodetic equipment or an unmanned aerial vehicle system. A sensor system (device) was developed, which consisted of three semiconductor sensors—MQ2, MQ4, and MQ135—which aimed to capture flammable gases (CO2, CH4, O2 purity) and to evaluate the averages of the measured values from the components mounted on the board—the semiconductor sensors. The sensors were calibrated in a laboratory and tested in a closed landfill. The measurement data consisted of the read resistances (analog signal) from the MQ2, MQ4, and MQ135 sensors, and the relative humidity and the temperature (digital signal) of the DHT2 sensor with a timestamp calculated by the RTC module. The use of the method was confirmed because the sensors reacted as expected when placed in the vicinity of the gas collection well. Furthermore, the sensor will be tested and improved for field work in landfill sites.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3747
Author(s):  
Adriana Lipovac ◽  
Vlatko Lipovac ◽  
Borivoj Modlic

Contemporary wireless networks dramatically enhance data rates and latency to become a key enabler of massive communication among various low-cost devices of limited computational power, standardized by the Long-Term Evolution (LTE) downscaled derivations LTE-M or narrowband Internet of Things (NB IoT), in particular. Specifically, assessment of the physical-layer transmission performance is important for higher-layer protocols determining the extent of the potential error recovery escalation upwards the protocol stack. Thereby, it is needed that the end-points of low processing capacity most efficiently estimate the residual bit error rate (BER) solely determined by the main orthogonal frequency-division multiplexing (OFDM) impairment–carrier frequency offset (CFO), specifically in small cells, where the signal-to-noise ratio is large enough, as well as the OFDM symbol cyclic prefix, preventing inter-symbol interference. However, in contrast to earlier analytical models with computationally demanding estimation of BER from the phase deviation caused by CFO, in this paper, after identifying the optimal sample instant in a power delay profile, we abstract the CFO by equivalent time dispersion (i.e., by additional spreading of the power delay profile that would produce the same BER degradation as the CFO). The proposed BER estimation is verified by means of the industry-standard LTE software simulator.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1697
Author(s):  
Xicong Li ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvánovec ◽  
Paul Anthony Haigh

With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


2021 ◽  
Vol 11 (4) ◽  
pp. 1499
Author(s):  
Bingchen Han ◽  
Junyu Xu ◽  
Pengfei Chen ◽  
Rongrong Guo ◽  
Yuanqi Gu ◽  
...  

An all-optical non-inverted parity generator and checker based on semiconductor optical amplifiers (SOAs) are proposed with four-wave mixing (FWM) and cross-gain modulation (XGM) non-linear effects. A 2-bit parity generator and checker using by exclusive NOR (XNOR) and exclusive OR (XOR) gates are implemented by first SOA and second SOA with 10 Gb/s return-to-zero (RZ) code, respectively. The parity and check bits are provided by adjusting the center wavelength of the tunable optical bandpass filter (TOBPF). A saturable absorber (SA) is used to reduce the negative effect of small signal clock (Clk) probe light to improve extinction ratio (ER) and optical signal-to-noise ratio (OSNR). For Pe and Ce (even parity bit and even check bit) without Clk probe light, ER and OSNR still maintain good performance because of the amplified effect of SOA. For Po (odd parity bit), ER and OSNR are improved to 1 dB difference for the original value. For Co (odd check bit), ER is deteriorated by 4 dB without SA, while OSNR is deteriorated by 12 dB. ER and OSNR are improved by about 2 dB for the original value with the SA. This design has the advantages of simple structure and great integration capability and low cost.


Sign in / Sign up

Export Citation Format

Share Document