A Study on Performance and Emissions of a 4-Stroke IC Engine Operated on Landfill Gas With Syngas Addition

Author(s):  
Jechan Lee ◽  
Marco J. Castaldi

The aim of this study is to investigate the suitability of landfill gas (LFG) as an alternative fuel for an internal combustion (IC) engine and how to reduce pollutants emissions from LFG operations by adding syngas to LFG. The effect of CO2 fractions in LFG on the engine performance and exhaust emissions such as CO, UHC and NOx are experimentally determined, and a simulated LFG (50% CH4 and 50% CO2) mixed with a simulated syngas consisting of H2 and CO (H2/CO = 2) is also studied. The Honda GC160E engine connected with a small generator which functions as different electrical loads is used for this study. When CO2 fraction in LFG changes from 0% to 50% at 0.8 kW load condition, CO and UHC emissions increase from 241.8ppm to 802.1ppm and from 35.6ppm to 113.4ppm respectively, while NOx emission decreases from 126.7ppm to 99.8ppm. In case of LFG (50% CH4 and 50% CO2)-syngas (H2/CO = 2) mixtures, 5% addition of syngas to LFG at 0.8 kW load condition reduces CO, UHC and NOx emissions from 802.1ppm to 203.1ppm, from 113.4ppm to 11.1ppm and from 99.8ppm to 64.5ppm, respectively. However, when more syngas is added to LFG (10% and 15% syngas in fuel mixture) it does not measurably reduce these emissions any further.

In recent years, research on alternative fuel which is an environmental friendly in nature has been carried out thoroughly by many researchers through their enormous experimental work. An experimental study was performed on VCR engine using neat diesel and mixture of JME and SME biodiesel-diesel blends. The performances of biofuels attained from the binary biodiesel and its different proportions with full load condition of the engine are analyzed in this paper with few fuel properties. The experimental work is conducted for different load conditions (No load, 30%, 60% and 90% at constant speed (1500 rpm). Engine performance (BSFC, BTE) and emissions (Hydrocarbon, CO & NOx) is measured to find out the nature of the engine running condition with two mixed biofuels. According to the results indicate the two mixed biodiesel Blend A (Diesel 80%, SME10% and JME 10% by vol ); Blend B (Diesel 60%, SME20% and JME 20% by vol) is a appropriate alternative fuel for pure diesel and minimized air pollution in the atmosphere.


2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


Author(s):  
Jennifer L. Y. Chalmers ◽  
Craig R. Davison ◽  
Wajid Ali Chishty ◽  
Jeff W. Bird ◽  
Tak Chan ◽  
...  

Alternative fuel sources are becoming an operational reality; these fuels have the potential to reduce emissions, improve combustion characteristics and to increase fuel supply security. A test with a T56 turboprop engine was performed to demonstrate that a CHEFA/JP8 (Camelina Hydroprocessed Ester and Fatty Acids and standard JP8) fuel blend would meet operational requirements. The primary test objective was to assess whether a fuel change had an immediate impact on the engine condition, performance, emissions or vibration characteristics. This paper presents test results comparing engine performance with JP8 and a 50/50 blend of JP8 and CHEFA. Comparison runs were conducted before and after a 20 hour ground durability test with the CHEFA fuel blend. A nearly time-expired, nacelle-dressed T56 on an outdoor test stand was tested. The engine was equipped with minimally-intrusive non-standard pressure, temperature and emissions monitoring equipment, and a field vibration assessment suite in addition to the standard flight instrumentation. This paper discusses the test plan, data acquisition methods, results and data repeatability. The performance and emissions results are compared to the changes predicted theoretically from the fuel properties. Observations from the borescope inspections before, during and after the 20 hour durability test are also presented. The lessons learned in this test could be applied to future fuel or process-change tests, and the results provide a performance baseline for engine health assessment.


Author(s):  
Girish Parvate-Patil ◽  
Manuel Vasquez ◽  
Malcolm Payne

This paper emphasizes on the effects of different biodiesels and diesel on; heat release, ignition delay, endothermic and exothermic reactions, NOx, fuel injection pressure due to the fuel’s modulus of elasticity and cylinder pressure. Two 100% biodiesel and its blends of 20% with of low sulfur #2 diesel, and #2 diesel are tested on a single cylinder diesel engine under full load condition. Engine performance and emissions data is obtained for 100% and 20% biodiesels blends and #2 diesel. Testes were conducted at Engine Systems Development Centre, Inc. (ESDC) to evaluate the effects of biodiesel and its blends on the performance and emissions of a single-cylinder medium-speed diesel engine. The main objective of this work was to gain initial information and experience about biodiesel for railway application based on which biodiesel and its blends could be recommended for further investigation on actual locomotives.


1998 ◽  
Vol 120 (1) ◽  
pp. 232-236 ◽  
Author(s):  
R. L. Evans ◽  
J. Blaszczyk

The work presented in this paper compares the performance and emissions of the UBC “Squish-Jet” fast-burn combustion chamber with a baseline bowl-in-piston (BIP) chamber. It was found that the increased turbulence generated in the fastburn combustion chambers resulted in 5 to 10 percent faster burning of the air–fuel mixture compared to a conventional BIP chamber. The faster burning was particularly noticeable when operating with lean air–fuel mixtures. The study was conducted at a 1.7 mm clearance height and 10.2:1 compression ratio. Measurements were made over a range of air–fuel ratios from stoichiometric to the lean limit. At each operating point all engine performance parameters, and emissions of nitrogen oxides, unburned hydrocarbons, and carbon monoxide were recorded. At selected operating points a record of cylinder pressure was obtained and analyzed off-line to determine mass-burn rate in the combustion chamber. Two piston designs were tested at wide-open throttle conditions and 2000 rpm to determine the influence of piston geometry on the performance and emissions parameters. The UBC squish-jet combustion chamber design demonstrates significantly better performance parameters and lower emission levels than the conventional BIP design. Mass-burn fraction calculations showed a significant reduction in the time to burn the first 10 percent of the charge, which takes approximately half of the time to burn from 10 to 90 percent of the charge.


2020 ◽  
Vol 39 (1) ◽  
pp. 161-172 ◽  
Author(s):  
A.E. Ikpe ◽  
I.B. Owunna

In this study, a two stroke internal combustion engine was successfully modeled as a closed cycle with the intake, compression, expansion and exhaust processes considered in two strokes of the reciprocating piston. The in-cylinder combusted gases with respect to air-fuel mixture of 14.4:1 in the two stroke engine model were analyzed, showing the dynamics of the combusted gases, the flame pressure and temperature trajectories. It was observed that provided compression and expansion takes place at air-fuel mixture near ideal condition (14.7:1), the combusted gas temperature which occurred in the range of 293.92-3000.60 K is directly proportional to the cylinder gas pressure which occurred in the range of 60.76-80.20 bar. With a heat transfer coefficient of 581.236 W/m2K, the maximum temperature of the IC engine material was found to be 2367.56K at equilibrium and the maximum shear stress was found to be 176 x 102 MPa (1.76 x 105 bar). The 14.4:1 air-fuel mixture implies that 26% O2, 73% N2 and 1% trace gases are the in-cylinder air constituent that will react with 1 mole of hydrocarbon to form the combusted products of 96.2% CO2, 3.2% H2O and 0.6% N2. This will vary in conditions where the air-fuel mixture changes. Keywords: Modelling, Gas dynamics, Two stroke, IC engine, Air-fuel mixture.


2019 ◽  
Vol 42 ◽  
pp. e43882
Author(s):  
Omar Seye ◽  
Rubem Cesar Rodrigues Souza ◽  
Ramon Eduardo Pereira Silva ◽  
Robson Leal da Silva

This paper evaluates internal combustion engine performance parameters (Specific Fuel Consumption and engine torque) and pollutant emissions (O2, CO, and NOX), and also, provide an assessment of economic viability for operation in Amazonas state. Power supply to the communities in the Amazon region has as characteristics high costs for energy generation and low fare. Extractive activities include plenty of oily plant species, with potential use as biofuel for ICE (Diesel cycle) to obtain power generation together with pollutant emission reduction in comparison to fossil fuel. Experimental tests were carried out with five fuel blends (crude palm oil) and diesel, at constant angular speed (2,500 RPM – stationary regime), and four nominal engine loads (0%, 50%, 75%, and 100%) in a test bench dynamometer for an engine-driven generator for electrical-power, 4-Stroke internal combustion engine, Diesel cycle. Main conclusions are: a) SFC and torque are at the same order of magnitude for PO-00 (diesel) and PO-xx at BHP50/75/100%; b) O2 emissions show consistent decreasing behavior as BHP increases, compatible to a rich air-fuel ratio (λ > 1) and, at the same BHP condition, O2 (%) is slightly lower for higher PO-xx content; c) The CO emissions for PO-00 consistently decrease while the BHP increases, as for PO-xx those values present a non-linear behavior; at BHP75%-100_loads, CO emissions are higher for PO-20 and PO-25 in comparison to PO-00; d) The overall trend for NOX emissions is to increase, the higher the BHP; In general, NOx emissions are lower for PO-xx in comparison to PO-00, except for PO-10 which presents slightly higher values than PO-00 for all BHP range; e) Assessment on-trend costs indicates that using palm oil blends for Diesel engine-driven generators in the Amazon region is economically feasible, with an appropriate recommendation for a rated power higher than 800 kW.


2000 ◽  
Vol 122 (4) ◽  
pp. 617-623 ◽  
Author(s):  
Jack A. Smith ◽  
Gordon J. J. Bartley

This paper presents the results from an internal research study conducted at the Southwest Research Institute (SwRI) on the effects of stoichiometric mixtures of natural gas and synthesis gas with exhaust gas recirculation (EGR) on engine performance and exhaust emissions. Constant load performance and emissions tests were conducted on a modified, single-cylinder, Caterpillar 1Y540 research engine at 11.0 bar (160 psi) bmep. Engine performance and emissions comparisons between natural gas with EGR, and natural gas with syngas and EGR are presented. In addition, the performance characteristics of the fuel reforming catalyst are presented. Results show that thermal efficiency increases with increasing EGR for both natural gas operation and natural gas with syngas operation at constant load. The use of syngas with natural gas extended the EGR tolerance by 44.4 percent on a mass basis compared to natural gas only, leading to a 77 percent reduction in raw NOx emissions over the lowest natural gas with EGR NOx emissions. [S0742-4795(00)00504-4]


2018 ◽  
Vol 225 ◽  
pp. 01013 ◽  
Author(s):  
Erdiwansyah ◽  
R. Mamat ◽  
M.S.M. Sani ◽  
Fitri Khoerunnisa ◽  
R.E Sardjono ◽  
...  

Biodiesel is an alternative fuel that is used in a diesel engine as a substitute for diesel fuel. However, using biodiesel without a modified engine can cause higher NOx emissions. Therefore, to reduce harmful emissions some strategy must be proposed or or a change in the injection is performed. In this study, injection schemes and engine performance injection time, emissions and firing characteristics of biodiesel mixing results in engines were investigated by using GT-POWER simulation. The simulations in this study were conducted on diesel engines to observe the accuracy in experimental results . The engines were tested at speeds of 1100 rpm, 1300 rpm, and 1500 rpm by using a biodiesel-diesel fuel mixture. The simulation results showed that NOx emissions were found to drop below 100 ppm when biodiesel fuel was used for all performed operations. Meanwhile CO emissions were also decreased by 10%-15% when biodiesel fuel was used, and the thermal efficiency level increased by 2% and 3.5% as compared to pure diesel. The ratio of NOx reduction rates of biodiesel and diesel was 11%-14% as compared to 9.5% with pure diesel. Based on the simulation result, it was shown that the accuracy level of simulation data with experiment was 97%. So this result can be the future testing standard and simulation by using GT-POWER could also be used especially for the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document