Bearing Capacity of a Skirted Foundation Under VMH Loading

Author(s):  
Susan Gourvenec ◽  
Mark Randolph

This paper presents results from a series of three-dimensional finite element analyses investigating the ultimate limit state of a circular skirted shallow foundation over a comprehensive range of combined vertical, moment and horizontal loading. Failure loci in V:M:H load space derived from the finite element analyses are compared with limit state predictions from the offshore industry design guidelines [1]. The comparison highlights considerable conservatism of the current design method largely due to poor representation of the response to fully combined loading and neglect of the tensile capacity achieved with foundation skirts. These shortcomings are particularly significant with respect to foundations for offshore conditions and result in an oversight of considerable potential load capacity in design.

2005 ◽  
Vol 8 (3) ◽  
pp. 309-324 ◽  
Author(s):  
H. X. Yu ◽  
J. Y. Richard Liew

When a building compartment is subjected to fire attack, there are complex interactions between the fire affected members with the surrounding members. The behaviour of the steel frame members in fire can be drastically different from that of its member in isolation. This paper studies the behaviour of steel beams with the increase of temperature from beam action phase to catenary action phase and until failure. The load bearing mechanism in the catenary action phase is discussed and the failure criterion is defined. A new ultimate limit state based on 15% maximum strain of steel material at elevated temperature is proposed to determine the ultimate load capacity of beams failed in the catenary action phase. Wide ranges of beam parameters including various beam sizes and span lengths with different degrees of end restraints are studied. Comparison of results with those obtained from nonlinear finite element analysis shows that the proposed design method could enhance the critical temperature of steel beams by over 200 °C if proper attention is given to the integrity of connections to resist the catenary force. In this respect, methods to estimate the catenary force and beam deflection are provided.


2021 ◽  
Author(s):  
Ruud Selker ◽  
Joost Brugmans ◽  
Ping Liu ◽  
Carlos Sicilia

Abstract Internally pressurised pipe behaves differently than externally pressurised pipe. DNVGL-ST-F101 [4], a prevailing standard for the design of submarine pipelines, provides limit-state equations for combined loading that are valid only if the diameter-to-wall-thickness ratio (D/t) is between 15 and 45. A recent study has shown that the results are increasingly conservative for lower values of this ratio if the nett pressure is acting on the pipe’s outside [8], especially if it is below 20. In this paper, the applicability of the limit-state equations for thick-walled pipe with D/t less than 15 and loaded by a nett internal pressure has been investigated. The first step was a fundamental review of the formulations. Next, the predicted capacities were compared with those estimated using a finite-element (FE) model. The results greatly coincided, which indicates that the conservatism underlying the formulations does not depend on D/t. Hence they can be used for design against local buckling under internal overpressure, too, when the ratio is below 15.


Author(s):  
Nicholas Haritos ◽  
Anil Hira ◽  
Priyan Mendis ◽  
Rob Heywood ◽  
Armando Giufre

VicRoads, the road authority for the state of Victoria, Australia, has been undertaking extensive research into the load capacity and performance of cast-in-place reinforced concrete flat slab bridges. One of the key objectives of this research is the development of analytical tools that can be used to better determine the performance of these bridges under loadings to the elastic limit and subsequently to failure. The 59-year-old Barr Creek Bridge, a flat slab bridge of four short continuous spans over column piers, was made available to VicRoads in aid of this research. The static testing program executed on this bridge was therefore aimed at providing a comprehensive set of measurements of its response to serviceability level loadings and beyond. This test program was preceded by the performance of a dynamic test (a simplified experimental modal analysis using vehicular excitation) to establish basic structural properties of the bridge (effective flexural rigidity, EI) and the influence of the abutment supports from identification of its dynamic modal characteristics. The dynamic test results enabled a reliably tuned finite element model of the bridge in its in-service condition to be produced for use in conjunction with the static testing program. The results of the static testing program compared well with finite element modeling predictions in both the elastic range (serviceability loadings) and the nonlinear range (load levels taken to incipient collapse). Observed collapse failure modes and corresponding collapse load levels were also found to be predicted well using yield line theory.


Author(s):  
Morteza Dezyani ◽  
Shahram Yousefi ◽  
Hossein Dalayeli ◽  
Hamid Frrokhfal

Preliminary design of stiffened compression panels used in aerospace structures is commonly based on the routine analytical and semi-empirical equations. Empirical charts are used for obtaining an initial guess to start the preliminary design process. In this paper, preliminary design guidelines for stiffened compression panels are developed based on the non-linear finite element analyses. Meanwhile, the process of design and optimization of the stiffened compression panels are carried out. Modelling phase is based on the finite element simulations of the structure. The surrogate modelling technique is employed to reduce the number of finite element analyses. An efficient technique is developed to find the global optimum of the surrogate model using sequential quadratic programming algorithm. The proposed approach is applied to two types of integrally stiffened panels. The final results are extracted as practical design guidelines which are suitable for preliminary design phase.


Author(s):  
Jianfeng Xu ◽  
Basel Abdalla ◽  
Ayman Eltaher ◽  
Paul Jukes

The increasing energy demand has promoted the interest in exploration and field development in the Arctic waters, which holds one quarter of the world’s petroleum reserves. The harsh conditions and fragile environment in the arctic region introduce many challenges to a sustainable development of these resources. One of the key challenges is the engineering consideration of warm pipelines installed in permafrost areas; found mainly in shallow waters and shore crossings. Evaluations have to be made during the pipeline design to avoid significant thaw settlement and large-scale permafrost degrading. In this paper, a three-dimensional (3D) finite element (FE) model was developed to study the interaction between buried pipelines transporting warm hydrocarbons and the surrounding permafrost. This interaction is a combination of several mechanisms: heat transfer from the pipeline, results in permafrost thawing and formation of thaw bulb around the pipeline. Consequently, the thaw settlement of soil beneath the pipeline base results in bending strains in the pipe wall. For safe operations, the pipe should be designed so that the induced strains do not exceed the ultimate limit state conditions. The developed model helps in accurate prediction of pipe strains by using finite element continuum modeling method as opposed to the more commonly used discrete (springs) modeling and hand calculations. It also assesses the real size of the thaw bulb and the corresponding settlement at any time, thus preventing an over-conservative design.


1997 ◽  
Vol 41 (04) ◽  
pp. 301-317
Author(s):  
Jeom K. Paik ◽  
Anil K. Thayamballi ◽  
Min S. Chun

The objectives of the present study are to obtain experimental data on collapse strength of steel corrugated bulkhead models and also to develop a simple analytical formulation for ultimate strength useful in the design of corrugated bulkheads under static lateral pressure. Collapse tests on nine mild steel corrugated bulkhead models having five bays of corrugations are carried out, varying the corrugation angle, the plate thickness and the type of loading (axial compression and/or lateral pressure). Using the test data, the characteristics of the collapse mechanism for corrugated bulkheads are investigated. For purposes of rapid first cut estimates of strength, a new and simple analytical formulation for predicting the ultimate strength of corrugated bulkheads under hydrostatic pressure is derived based on an assumed stress distribution over the corrugation cross section at the ultimate limit state. The modeling error associated with the new formulation is established by comparing its predictions with the experimental results. The development of ultimate strength based design guidelines and the effect of design parameters such as the corrugation angle on ultimate strength of a corrugated bulkhead are then discussed. All experimental information and strength data are tabulated, which is a benefit in itself.


2021 ◽  
Author(s):  
Eleonore Roguet ◽  
Emmanuel Persent ◽  
Daniel Averbuch

Abstract A new method which uses elastic and elasto-plastic Finite Element analyses is developed to design a double breech-block type connector. All relevant criteria proposed by API16F are fulfilled. In addition, plastic and bearing criteria have been added to support the use of lugs for load transfer in the connector. The proposed methodology has been applied and validated through experimental tests at different scales and in particular on laboratory specimens and small-scaled connectors. Based on these last structural tests, a safety factor of almost 8 was obtained for the design method on small-scaled connectors. Prototype tests at scale 1:1 allowed the methodology to be fully validated and a new product to be qualified. Certification bodies validated the whole design process, the employed methodology and the new connector.


2011 ◽  
Vol 225-226 ◽  
pp. 823-826
Author(s):  
Yu Feng Zhang ◽  
Guo Fu Sun

As a part of virtual simulation of construction processes, this paper deals with the quantitative risk analysis for the construction phases of the CFST arch bridge. The main objectives of the study are to evaluate the risks by considering an ultimate limit state for the fracture of cable wires and to evaluate the risks for a limit state for the erection control during construction stages. Many researches have been evaluated the safety of constructed bridges, the uncertainties of construction phases have been ignored. This paper adopts the 3D finite element program ANSYS to establish the space model of CFST Arch Bridge, and to calculate the linear, the geometrical nonlinear and the double nonlinear buckling safety factors under the six different lode cases. Then the bridge’s risks are evaluated according to the results calculated which provide a reference for design of similar project.


2020 ◽  
Vol 10 (23) ◽  
pp. 8514
Author(s):  
Jatziri Y. Moreno-Martínez ◽  
Arturo Galván ◽  
Fernando Peña ◽  
Franco Carpio

The construction of tunnels has become increasingly common in city infrastructure; tunnels are used to connect different places in a region (for transportation and/or drainage). In this study, the structural response of a typical segmental tunnel built in soft soil was studied using a simplified model which considers the coupling between segmental rings. From an engineering point of view, there is a need to use simple and reliable finite element models. Therefore, a 1D model based on the Finite Element Method (FEM) composed of beam elements to model the segments and elastic-linear springs and non-linear springs to model the mechanical behavior of the joints was performed. To validate the modeling strategy, the numerical results were compared to (lab-based) experimental results, under an Ultimate Limit State, obtained from the literature, and a comparison between numerical results considering a 3D numerical complex model which included the nonlinearity of concrete, reinforcing steel and the joints was performed. With this simplified model, we obtained a prediction of approximately 95% of the ultimate loading capacity compared to the results developed in the experimental and 3D models. This proposed model will help engineers in practice to create “rational” structural designs of segmental tunnel linings when a “low” interaction between rings is expected.


Sign in / Sign up

Export Citation Format

Share Document