Assessing Motion Stress Levels on Board of Fishing Vessels of the Newfoundland Fleet

Author(s):  
Don Bass ◽  
David Cumming ◽  
Ayhan Akinturk ◽  
David Molyneux ◽  
Javier Vera ◽  
...  

The aim of this study is to develop a numerical tool that could be used to assess the physical stress levels associated with the vessel motions on board of fishing vessels of the Newfoundland fleet. A number of full-scale sea trials of typical fishing vessels of the fleet are underway to validate the numerical tool. Model experiments are expected to follow in the near future. If desirable correlations between the trials, model tests and the numerical results are obtained, simulations will be performed to obtain typical ‘motion stress’ profiles of various fishing boats over a typical fishing season. This paper presents the preliminary results obtained so far. Sea trials for a 35’ fishing vessel was conducted. Sample results presented in the paper. Motion Induced Interruption (MII), which will be used to assess the physical stress levels has been implemented into the numerical tool and few case studies performed for the 35’ fishing vessel. Results obtained so far seem promising.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1717
Author(s):  
Camilo Andrés Ordóñez ◽  
Antonio Gómez-Expósito ◽  
José María Maza-Ortega

This paper reviews the basics of series compensation in transmission systems through a literature survey. The benefits that this technology brings to enhance the steady state and dynamic operation of power systems are analyzed. The review outlines the evolution of the series compensation technologies, from mechanically operated switches to line- and self-commutated power electronic devices, covering control issues, different applications, practical realizations, and case studies. Finally, the paper closes with the major challenges that this technology will face in the near future to achieve a fully decarbonized power system.


2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


2021 ◽  
Vol 4 ◽  
pp. 30-36
Author(s):  
Jacobus Tupan ◽  
Richard Benny Luhulima

In general, fishing fleets operating in Maluku waters and managed by local entrepreneurs consist of monohull and trimaran fishing vessels with outriggers. Monohull fishing vessels have limited deck space and poor transverse stability, while trimaran-type vessels have better deck space and transverse stability than monohull vessels, but because they are still in the form of outriggers, the space is limited. This study aims to examine the development of the trimaran fishing vessel in terms of energy requirements, safety, and comfort of the crew during fishing operations. The initial stage of this research begins with data analysis and the basic size of monohull fishing vessels operating in Maluku waters, from this data the shape of the trimaran hull is designed. Calculation of resistance using CFD, then analyzed the calculation of resistance and stability, safety, and comfort of the ship using Maxsurf. The drag Trimaran is 8.86% smaller than a monohull and 3.25% smaller than a catamaran. Energy Usage (EHP) is proven by trimaran ships more than other ship modes. The average trimaran period is 10.5 seconds which meets IMO standards and is declared operationally good.


2021 ◽  
Vol 4 ◽  
pp. 44-50
Author(s):  
Fella Gaspersz ◽  
Richard B. Luhulima

The marine fisheries catching and processing industry are considered vulnerable to the effects of extreme weather at sea. Global warming effects and El Nino and La Nina have a significant impact on the upwelling process, which impacts the lifestyle and environment of marine biota, including pelagic fish, which is one of the most important contributors to the shipping industry. Extreme weather conditions, with wave heights ranging from 1 to 5 meters, dominate the waters of Maluku. In extreme sea conditions, most fishers choose not to go fishing, not because there are no fish at the fishing grounds, but to avoid mishaps at sea. This research aimed to analyze the critical point of ship roll motion and ship stability. The hull shape employed in this study was a monohull fishing vessel and a trimaran fishing vessel with the same displacement of 21,1 tons. In extreme weather conditions, the Maxsurf software was used to analyze the ship's response, especially the critical point of the ship's roll motion. The I.M.O. Standard was utilized to calculate the ship's stability. The operational speed of the ship was v = 3 knots, with fluctuations in wave angle of incidence between 00 - 1800. Wave heights of 1,0; 2,0; 3,0, and 0,4 meters represent extreme weather conditions in Maluku waters' fishing grounds. The findings revealed that the trimaran hull type had better stability where the inclination angle of trimaran vessel stability was 480 while the monohull was 410. The trimaran fishing vessel was able to withstand a wave height of 3 meters with an inclination angle of 32,560. In comparison, the monohull fishing vessel was able to survive at a wave height of 2 meters with an inclination angle of 24,690. Monohull fishing vessel had a maximum limit of roll motion at wave directions 82 and 99 with a wave height of 3 m, and it reached at the critical point at angles of 43 and 138, at the height of 4 m. Meanwhile, the trimaran fishing vessel had a critical point at a wave angle of 760 and 1000 with a wave height of 4 meters. In the area between those two angles, monohull and trimaran fishing vessels will lose the balance (stability) of the roll motion, resulting in capsize.


This study aims to determine the level of compliance of fishing vessels operations to Malaysian Fisheries Department rules and regulations as well as to identify the reasons of non-compliance among fishermen in Pangkor Island, Perak. The data was collected through the distribution of questionnaire and analysed using descriptive statistical tools. The level of compliance of fishing vessel operations was determined by a five point Likert scale, whilst qualitative statements were grouped into several topics using qualitative content analysis. The reasons for the fishermen’s non-compliance were also identified by using closed-ended and open-ended questions. The outcome of this study can be categorised into several levels of compliance. As for the reasons for non-compliance, the most frequent reason chosen by respondents was lack of trust towards the authorities.


Author(s):  
Sarah Putri Fitriani ◽  
Jonson Lumban Gaol ◽  
Dony Kushardono

The synthetic aperture radar (SAR) instrument of Sentinel-1 is a remote sensing technology being developed to enable the detection of vessel distribution. The purpose of this research is to study fishing-vessel detection using SAR Sentinel-1 data. In this study, the constant false alarm rate method (CFAR) for Sentinel-1 data is used for the detection of fishing vessels in Indramayu sea waters. The data used to detect ships includes SAR Sentinel-1A images and vessel monitoring system (VMS) data acquired on 8 March and 20 March 2018. SAR Sentinel-1 imagery data is obtained through pre-processing and object identification using Sentinel Application Platform (SNAP) software. Overlay analysis is then used to enable discrimination of immovable and movable objects and validation of ships detected from SAR Sentinel-1 imagery is performed using VMS data. From overlay analysis, 46 ships were detected on 8 March 2018 and 39 ships on 20 March 2018. Of all the ship points detected using SAR Sentinel-1, 7.06% could be detected by VMS data while 92.94% could not. The number of ships detected by SAR Sentinel-1 is greater than those detected by VMS because not all ships use VMS devices. 


1997 ◽  
Vol 34 (01) ◽  
pp. 10-23
Author(s):  
Sander M. Calisal ◽  
David Howard ◽  
Jon Mikkelsen

The University of British Columbia (UBC) and the British Columbia Research Incorporated (BCRI) collaborated to design a fishing vessel suitable for use on the west coast of Canada. This vessel, called the UBC Series parent hull form, was designed to have a large aft deck area and a volumetric coefficient comparable to those of modern Canadian fishing vessels. The resistance characteristics of this hull were improved without compromising on functionality and usable space. A resistance algorithm developed from the results for a systematic series of low-L/B displacement-type vessels, the UBC Series, was previously published (Calisal&McGreer, 1993). However, during the design process, the seakeeping performance of the vessel was never addressed. This paper describes the seakeeping performance of the UBC series in head seas. An algorithm, developed from the results of the model tests, can be used to calculate the seakeeping response of similar low L/B vessels. To calibrate the seakeeping measurement procedure, tank instrumentation, and data collection system, the ITTC Standard Seakeeping hull form (the S-175 hull form) was tested and the results were compared against published results for this hull form. The same techniques used for the standard hull form were then used to measure the seakeeping performance of the UBC Series. Possible application of the algorithm for non-UBC Series forms is also discussed.


Fisheries ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 111-113
Author(s):  
Viktor Min'ko

The problem of choosing a fishing vessel is considered. Statistical data from various countries are presented, confirming the increased level of professional risk for members of the crews of small vessels. A relation that relates the frequency of fatal accidents among fishermen with the displacement of fishing vessels is obtained. The necessity of increasing the level of safety of the solutions used in the design of fishing schemes, fishing equipment and fishing gears is indicated.


Sign in / Sign up

Export Citation Format

Share Document