scholarly journals PERBANDINGAN KAPAL MONOHULL, CATAMARAN, TRIMARAN BERDASARKAN TINJAUAN OPERASIONAL PENGGUNAAN BAHAN BAKAR

2021 ◽  
Vol 4 ◽  
pp. 30-36
Author(s):  
Jacobus Tupan ◽  
Richard Benny Luhulima

In general, fishing fleets operating in Maluku waters and managed by local entrepreneurs consist of monohull and trimaran fishing vessels with outriggers. Monohull fishing vessels have limited deck space and poor transverse stability, while trimaran-type vessels have better deck space and transverse stability than monohull vessels, but because they are still in the form of outriggers, the space is limited. This study aims to examine the development of the trimaran fishing vessel in terms of energy requirements, safety, and comfort of the crew during fishing operations. The initial stage of this research begins with data analysis and the basic size of monohull fishing vessels operating in Maluku waters, from this data the shape of the trimaran hull is designed. Calculation of resistance using CFD, then analyzed the calculation of resistance and stability, safety, and comfort of the ship using Maxsurf. The drag Trimaran is 8.86% smaller than a monohull and 3.25% smaller than a catamaran. Energy Usage (EHP) is proven by trimaran ships more than other ship modes. The average trimaran period is 10.5 seconds which meets IMO standards and is declared operationally good.

2021 ◽  
Vol 4 ◽  
pp. 37-43
Author(s):  
Richard B. Luhulima

In general, the fishing fleets operating in Maluku waters are consisted of monohull and trimaran vessels with outriggers managed by local entrepreneurs. Monohull fishing vessels have limited deck space and low transverse stability, whereas trimaran fishing vessels have more deck space and greater transverse stability than monohull fishing vessels, but space is still limited due to their outrigger shape. This study aimed to analyze the development of the trimaran fishing vessel in terms of energy requirements, safety and comfort of the crew during fishing operations. At the beginning of this research, data analysis was undertaken and the basic size of monohull fishing vessels operating in Maluku waters, from this data the shape of the trimaran hull was then designed. Resistance was calculated using CFD, and then the resistance, stability, safety, and comfort of the ship were examined using Maxsurf. The trimaran vessel’s barrier was 8.86% smaller than a monohull and 3.25% smaller than a catamaran. Trimaran vessels consumed more energy than other vessel types. The average trimaran period was 10.5 seconds which met IMO standards and was declared as operationally good.


2020 ◽  
Vol 10 (2) ◽  
pp. 191-204
Author(s):  
Ayang Armelita Rosalia ◽  
Anwar Bey Pane ◽  
Iin Solihin ◽  
Roma Yuli Felina Hutapea ◽  
Aprilia Syah Putri ◽  
...  

Cisolok Fish Landing Base (CFLB) cannot be used optimally, because the main facilities for the fish landing dock and port pool are no longer be implemented and cannot accommodate all Cisolok fishing vessels. The condition of the fish landing dock and port pond which are not functioning optimally, has resulted in the need for the development of main facilities at CFLB. The objective of this study is to obtain an important strategy for the development of fish landing facilities and activities related to the development of main port facilities for CFLB managers, namely; fish landing docks and port pond. The method used is a case study. The data analysis by using SWOT  (Strength-Weakness-Opportunity-Threats) analysis. The important strategies that can be applied in the development of CFLB facilities includes: (1) Carry out the gradual construction of main facilities (fish landing dock and port pond), (2) performing a breakwater by extending the length of the breakwater along the coast to the left and right of the port, (3) dredging sedimentation so that motorboats can enter CFLB, and (4) increasing the size and number of the fishing vessel.


2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


2021 ◽  
Author(s):  
Leslie Roberson ◽  
Chris Wilcox

Abstract Fisheries bycatch continues to drive the decline of many threatened marine species such as seabirds, sharks, marine mammals, and sea turtles. Management frameworks typically address bycatch with fleet-level controls on fishing. Yet, individual operators differ in their fishing practices and efficiency at catching fish. If operators have differing abilities to target species, they should also have differing abilities to anti-target bycatch species. We analyse variations in threatened species bycatch among individual operators from five industrial fisheries representing different geographic areas, gear types, and target species. The individual vessel is a significant predictor of bycatch for 15 of the 16 species-fishery interactions, including species that represent high or low costs to fishers, or have economic value as potentially targeted byproducts. Encouragingly, we found high performance operators in all five fishing sectors, including gears known for high bycatch mortality globally. These results show the potential to reduce negative environmental impacts of fisheries with incentive-based interventions targeting specific performance groups of individuals. Management of threatened species bycatch Incidental catch of marine animals in fishing gear ("bycatch") has been recognized as a serious problem for several decades. Despite widespread efforts to address it, bycatch remains one of the most pressing issues in fisheries management today, especially for threatened or protected species such as sea turtles, seabirds, elasmobranchs, and marine mammals1,2. The most common approaches to reducing bycatch have been command-and-control measures implemented across the entire fleet or industry, such as technology requirements or total allowable catch for particular bycatch species3,4. These conventional approaches have been far from universally successful, and have often performed worse in practice than models and trials suggested, even when the same approach is translated to a similar fishery5. The Skipper Effect Managing bycatch is a problem of fishing efficiency. Although management frameworks typically treat fishing fleets as a unit, several studies suggest that the skill of individual operators (the "skipper effect") could be a driver of important and unexplained variations in fishing efficiency. A skipper's skill is some combination of managerial ability, experience and knowledge of the environment, ability to respond to rapidly changing information and conditions at sea, and numerous other factors that are difficult to describe or record6. There is ongoing debate about the key components of operator skill and its importance in different contexts, such as different gears or technical advancement of fisheries7–10. Yet, numerous studies show consistent variation in target catch rates among anglers, skippers, or fishing vessels that is not explained by environmental variables or economic inputs7,11−13. This includes technically advanced and homogeneous fleets where a skipper's skill would seemingly be less important14. Previously, the skipper effect has been explored in relation to fishing efficiency and profitability (effort and target catch). However, if fishers have differing abilities to catch species they want, it follows that they would also have variable skill at avoiding unwanted species. Untangling the skipper effect is difficult without very detailed data, which are often not available for target catch and are extremely rare for bycatch. We capitalize on a rare opportunity to compare multiple high-resolution fisheries datasets that have information about both target and bycatch. We use fisheries observer data from five Australian Commonwealth fisheries sectors to answer three key questions: 1) Is there significant and predictable variation among operators in their target to bycatch ratios? We hypothesize that there are characteristics at the operator level that lead some vessels to perform worse than others on a consistent basis, and that operator skill is an important factor driving variations in bycatch across fishing fleets; 2) Does the pattern hold across species, gear types, and fisheries? We predict that, irrespective of the bycatch context, there are high performing operators that are able to avoid bycatch while maintaining high target catch; and 3) Does skipper skill transfer across species?” We posit that certain types of bycatch are inherently more difficult to avoid but expect to find correlations between bycatch rates, indicating that a skipper's ability to avoid one species extends to other types of bycatch. If these hypotheses hold true, then there exists untapped potential to reduce bycatch without imposing additional controls on fishing effort and gear. This would support an alternative approach to framing management questions such as those around threatened species bycatch. It may be that it is not a random event across a fishery, but in fact is an issue of particular low performance operators. In this case, measures aimed directly at those individual operators could be an opportunity to make considerable progress towards reducing threatened species bycatch, at potentially much lower cost than common whole-of-fishery solutions.


2021 ◽  
Vol 4 ◽  
pp. 44-50
Author(s):  
Fella Gaspersz ◽  
Richard B. Luhulima

The marine fisheries catching and processing industry are considered vulnerable to the effects of extreme weather at sea. Global warming effects and El Nino and La Nina have a significant impact on the upwelling process, which impacts the lifestyle and environment of marine biota, including pelagic fish, which is one of the most important contributors to the shipping industry. Extreme weather conditions, with wave heights ranging from 1 to 5 meters, dominate the waters of Maluku. In extreme sea conditions, most fishers choose not to go fishing, not because there are no fish at the fishing grounds, but to avoid mishaps at sea. This research aimed to analyze the critical point of ship roll motion and ship stability. The hull shape employed in this study was a monohull fishing vessel and a trimaran fishing vessel with the same displacement of 21,1 tons. In extreme weather conditions, the Maxsurf software was used to analyze the ship's response, especially the critical point of the ship's roll motion. The I.M.O. Standard was utilized to calculate the ship's stability. The operational speed of the ship was v = 3 knots, with fluctuations in wave angle of incidence between 00 - 1800. Wave heights of 1,0; 2,0; 3,0, and 0,4 meters represent extreme weather conditions in Maluku waters' fishing grounds. The findings revealed that the trimaran hull type had better stability where the inclination angle of trimaran vessel stability was 480 while the monohull was 410. The trimaran fishing vessel was able to withstand a wave height of 3 meters with an inclination angle of 32,560. In comparison, the monohull fishing vessel was able to survive at a wave height of 2 meters with an inclination angle of 24,690. Monohull fishing vessel had a maximum limit of roll motion at wave directions 82 and 99 with a wave height of 3 m, and it reached at the critical point at angles of 43 and 138, at the height of 4 m. Meanwhile, the trimaran fishing vessel had a critical point at a wave angle of 760 and 1000 with a wave height of 4 meters. In the area between those two angles, monohull and trimaran fishing vessels will lose the balance (stability) of the roll motion, resulting in capsize.


This study aims to determine the level of compliance of fishing vessels operations to Malaysian Fisheries Department rules and regulations as well as to identify the reasons of non-compliance among fishermen in Pangkor Island, Perak. The data was collected through the distribution of questionnaire and analysed using descriptive statistical tools. The level of compliance of fishing vessel operations was determined by a five point Likert scale, whilst qualitative statements were grouped into several topics using qualitative content analysis. The reasons for the fishermen’s non-compliance were also identified by using closed-ended and open-ended questions. The outcome of this study can be categorised into several levels of compliance. As for the reasons for non-compliance, the most frequent reason chosen by respondents was lack of trust towards the authorities.


Author(s):  
Sarah Putri Fitriani ◽  
Jonson Lumban Gaol ◽  
Dony Kushardono

The synthetic aperture radar (SAR) instrument of Sentinel-1 is a remote sensing technology being developed to enable the detection of vessel distribution. The purpose of this research is to study fishing-vessel detection using SAR Sentinel-1 data. In this study, the constant false alarm rate method (CFAR) for Sentinel-1 data is used for the detection of fishing vessels in Indramayu sea waters. The data used to detect ships includes SAR Sentinel-1A images and vessel monitoring system (VMS) data acquired on 8 March and 20 March 2018. SAR Sentinel-1 imagery data is obtained through pre-processing and object identification using Sentinel Application Platform (SNAP) software. Overlay analysis is then used to enable discrimination of immovable and movable objects and validation of ships detected from SAR Sentinel-1 imagery is performed using VMS data. From overlay analysis, 46 ships were detected on 8 March 2018 and 39 ships on 20 March 2018. Of all the ship points detected using SAR Sentinel-1, 7.06% could be detected by VMS data while 92.94% could not. The number of ships detected by SAR Sentinel-1 is greater than those detected by VMS because not all ships use VMS devices. 


1991 ◽  
Vol 28 (02) ◽  
pp. 55-72
Author(s):  
Bruce L. Hutchison

A detailed exposition of the kinematics of the transverse plane motions of ships is provided, with particular attention to the important process of total transverse acceleration in vessel coordinates. The loci of sway, sway velocity and sway acceleration are shown to follow hyperbolic distributions with respect to elevation in both regular and irregular waves. In regular waves the transverse acceleration in earth-fixed and vessel-fixed coordinates are shown to be congruent with a vertical shift in elevation of g/ω2 = λ/(2π). Expressions are given for the elevations minimizing transverse plane processes in regular and irregular waves. In long waves the elevation minimizing total transverse acceleration in vessel coordinates is shown to be g/ωn2 = g[Tn/ /(2π)]2 below the waterline. This is the roll center, which should be used in the traditional analysis of foundation loads. Its location, far below the keel for most vessels, is surprising. The elevation (OP) of the roll axis, which must be used when solving the one-degree-of-freedom equation for roll, is given and is shown to require hydrodynamic coefficients for sway as well as roll. In general, OP does not correspond to an elevation that minimizes any of the transverse plane processes. The effect of hull form, transverse stability and natural roll period on transverse plane motions are examined in an attempt to resolve the dichotomy of views between those who favor ships with low GMT and long natural roll periods and those who favor high GMT with short natural roll periods. It is demonstrated that large values of the beam-to-draft ratio (6/7) with low natural roll periods are advantageous at modest elevations above the waterline. This explains the favorable offshore experience in vessels meeting this description, such as tugs, supply vessels and fishing vessels. At higher elevations long natural periods are shown to present a clear advantage, which supports the preference for low GMT for large passenger vessels, containerships and ships with deck-loads of logs. The trends identified would seem to support the conjecture that, with regard to natural roll period, there is a "forbidden middle" that should be avoided in design.


1997 ◽  
Vol 34 (01) ◽  
pp. 10-23
Author(s):  
Sander M. Calisal ◽  
David Howard ◽  
Jon Mikkelsen

The University of British Columbia (UBC) and the British Columbia Research Incorporated (BCRI) collaborated to design a fishing vessel suitable for use on the west coast of Canada. This vessel, called the UBC Series parent hull form, was designed to have a large aft deck area and a volumetric coefficient comparable to those of modern Canadian fishing vessels. The resistance characteristics of this hull were improved without compromising on functionality and usable space. A resistance algorithm developed from the results for a systematic series of low-L/B displacement-type vessels, the UBC Series, was previously published (Calisal&McGreer, 1993). However, during the design process, the seakeeping performance of the vessel was never addressed. This paper describes the seakeeping performance of the UBC series in head seas. An algorithm, developed from the results of the model tests, can be used to calculate the seakeeping response of similar low L/B vessels. To calibrate the seakeeping measurement procedure, tank instrumentation, and data collection system, the ITTC Standard Seakeeping hull form (the S-175 hull form) was tested and the results were compared against published results for this hull form. The same techniques used for the standard hull form were then used to measure the seakeeping performance of the UBC Series. Possible application of the algorithm for non-UBC Series forms is also discussed.


Sign in / Sign up

Export Citation Format

Share Document