Scaling of the Hydroelastic Response of Flexible Lifting Bodies in Transitional and Turbulent Flows

Author(s):  
Antoine Ducoin ◽  
Yin Lu Young

The objective of this research is to derive and validate scaling relationships for flexible lifting bodies in transitional and turbulent flows. The motivation is to help the design and interpretation of reduced-scale experimental studies of flexible hydrofoils, with focus on the influence of viscous effects on the hydroelastic response. The numerical method is based on a previous validated viscous FSI solver presented in [1]. It is based on the coupling between a commercial Computational Fluid Dynamics (CFD) solver, CFX, and a simple two-degrees-of-freedom (2-DOF) system that simulates the free tip section displacement of a cantilevered, rectangular hydrofoil. To validate the scaling relations, sample numerical results are shown for three geometrically similar models: full scale, 1/2 scale and 1/10 scale. On the fluid side, although the effects of gravity and compressibility are assumed to be negligible, three different methods of scaling the velocity are considered: Reynolds scaling, Froude scaling, and Mach scaling. The three scaling methods produce different velocity scales when the fluid properties and gravitational constant are the same between the model and prototype, which will lead to different scaling for the material properties. The results suggest that by applying Mach scaling (which does not mean the flow is compressible, but simply requires the relative inflow velocity and fluid properties to be the same between the model and the prototype) and Re ≥ 2 × 106, the same material as the full scale could be used, which will lead to similar stress distributions, in addition to similar strains, and hence similar hydroelastic response and failure mechanisms. However, if Re ≤ 2 × 106 and Mach scale is used, a viscous correction is required to properly extrapolate the experimental results to full-scale.

Author(s):  
LiXiang Guo ◽  
JiaWei Yu ◽  
JiaJun Chen ◽  
KaiJun Jiang ◽  
DaKui Feng

It is critical to be able to estimate a ship’s response to waves, since the added resistance and loss of speed may cause delays or course alterations, with consequent financial repercussions. Traditional methods for the study of ship motions are based on potential flow theory without viscous effects. Results of scaling model are used to predict full-scale of response to waves. Scale effect results in differences between the full-scale prediction and reality. The key objective of this study is to perform a fully nonlinear unsteady RANS simulation to predict the ship motions and added resistance of a full-scale KRISO Container Ship. The analyses are performed at design speeds in head waves, using in house computational fluid dynamics (CFD) to solve RANS equation coupled with two degrees of freedom (2DOF) solid body motion equations including heave and pitch. RANS equations are solved by finite difference method and PISO arithmetic. Computations have used structured grid with overset technology. Simulation results show that the total resistance coefficient in calm water at service speed is predicted by 4 .68% error compared to the related towing tank results. The ship motions demonstrated that the current in house CFD model predicts the heave and pitch transfer functions within a reasonable range of the EFD data, respectively.


2020 ◽  
pp. 1-16 ◽  
Author(s):  
Cihad Delen ◽  
Ugur Can ◽  
Sakir Bal

Resistance and self-propulsion characteristics of a naval ship at full scale have been investigated by using Telfer’s GEOmetrically SIMilar (GEOSIM) method based on the computational fluid dynamics (CFD) approach. For this purpose, first, the resistance forces of the Office of Naval Research Tumblehome (ONRT) hull have been computed at different three model scales by using the overset mesh technique. The full-scale resistance and nominal wake fraction of the ONRT hull have been estimated by using Telfer’s GEOSIM method. Resistance and nominal wake fraction have then been compared with those of CFD at full scale. Later, the self-propulsion characteristics of the ONRT hull have been examined using Telfer’s GEOSIM method based on the CFD approach. Self-propulsion factors at the full-scale hull have been predicted by using the SST k-ω turbulence model to involve 2-degrees of freedom ship motions (heave and pitch). Rotational motion of the propeller has also been simulated by using the rigid body motion technique. The results calculated by Telfer’s GEOSIM method and the 1978 International Towing Tank Conference (ITTC) extrapolation technique have been compared with each other and discussed with those of the CFD approach at full scale. It was found that the full-scale results (both resistance and self-propulsion factors) predicted by Telfer’s GEOSIM method are closer to those of the CFD approach than those of the 1978 ITTC technique. It can be noted that Telfer’s GEOSIM method is fast, robust, and reliable and can be used as an alternative to the 1978 ITTC method for predicting the self-propulsion performance of a full-scale ship.


Author(s):  
Antoine Ducoin ◽  
Yin Lu Young ◽  
Jean-Franc¸ois Sigrist

The objective of this work is to develop and validate a robust method to simulate the hydroelastic responses of flexible hydrofoil in turbulent, cavitating flow. A two degrees-of-freedom (2-DOF) model is used to simulate the plunging and pitching motion at the foil tip due to bending and twisting deformation of a 3-D cantilevered hydrofoil. The 2-DOF model is loosely coupled with the commercial computational fluid dynamics (CFD) solver STAR-CCM+ to efficiently simulate the fluid-structure interaction (FSI) responses of a cantilevered, rectangular hydrofoil. The numerical predictions are compared with experimental measurements for cases with and without cavitation. The experimental studies were conducted in the cavitation tunnel at the French Naval Academy (IRENav), France. Only quasi-steady cases with Reynolds number (Re) of 750,000 are shown in this paper. In general, the numerical results agree well with the experimental measurements and observations. The results show that elastic deformation of the POM polyacetate (flexible) hydrofoil lead to increases in the angle of attack, which resulted in higher lift and drag coefficients, lower lift to drag ratio, and longer cavities compared to the stainless steel (rigid) hydrofoil. Whereas only stable cavitation cases are considered in this paper, significant interaction effects were observed during experiments for cases with unstable cavitation due to interations between the foil natural frequencies and the cavity shedding frequencies. Transient analysis of the FSI responses of 3-D elastic hydrofoils in turbulent, cavitating flow is currently under work.


Author(s):  
Yiannis Constantinides ◽  
Owen H. Oakley ◽  
Samuel Holmes

Complex flows through riser arrays, such as the case of risers located in the truss section of a truss spar, are very difficult to describe and analyze. It is especially difficult predict and correct Vortex Induced Vibration (VIV) response using traditional tools that were meant to analyze single risers rather than arrays of risers. Computational Fluid Dynamics (CFD) offers the designer the capability to properly analyze these complex problems, increasing the reliability of the design. In this study, a full scale truss spar with vertical risers is modeled using CFD. The VIV response of the risers is predicted and the effect of risers is correctly captured and compared with experiments.


Author(s):  
Dmitry A. Neganov ◽  
◽  
Victor M. Varshitsky ◽  
Andrey A. Belkin ◽  
◽  
...  

The article contains the comparative results of the experimental and calculated research of the strength of a pipeline with such defects as “metal loss” and “dent with groove”. Two coils with diameter of 820 mm and the thickness of 9 mm of 19G steel were used for full-scale pipe sample production. One of the coils was intentionally damaged by machining, which resulted in “metal loss” defect, the other one was dented (by press machine) and got groove mark (by chisel). The testing of pipe samples was performed by applying static internal pressure to the moment of collapse. The calculation of deterioration pressure was carried out with the use of national and foreign methodical approaches. The calculated values of collapsing pressure for the pipe with loss of metal mainly coincided with the calculation experiment results based on Russian method and ASME B31G. In case of pipe with dent and groove the calculated value of collapsing pressure demonstrated greater coincidence with Russian method and to a lesser extent with API 579/ASME FFS-1. In whole, all calculation methods demonstrate sufficient stability of results, which provides reliable operation of pipelines with defects.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1035 ◽  
Author(s):  
Magnus Harrold ◽  
Pablo Ouro

Tidal turbines are subject to highly dynamic mechanical loading through operation in some of the most energetic waters. If these loads cannot be accurately quantified at the design stage, turbine developers run the risk of a major failure, or must choose to conservatively over-engineer the device at additional cost. Both of these scenarios have consequences on the expected return from the project. Despite an extensive amount of research on the mechanical loading of model scale tidal turbines, very little is known from full-scale devices operating in real sea conditions. This paper addresses this by reporting on the rotor loads measured on a 400 kW tidal turbine. The results obtained during ebb tidal conditions were found to agree well with theoretical predictions of rotor loading, but the measurements during flood were lower than expected. This is believed to be due to a disturbance in the approaching flood flow created by the turbine frame geometry, and, to a lesser extent, the non-typical vertical flow profile during this tidal phase. These findings outline the necessity to quantify the characteristics of the turbulent flows at sea sites during the entire tidal cycle to ensure the long-term integrity of the deployed tidal turbines.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3537
Author(s):  
Christian Friedrich ◽  
Steffen Ihlenfeldt

Integrated single-axis force sensors allow an accurate and cost-efficient force measurement in 6 degrees of freedom for hexapod structures and kinematics. Depending on the sensor placement, the measurement is affected by internal forces that need to be compensated for by a measurement model. Since the parameters of the model can change during machine usage, a fast and easy calibration procedure is requested. This work studies parameter identification procedures for force measurement models on the example of a rigid hexapod-based end-effector. First, measurement and identification models are presented and parameter sensitivities are analysed. Next, two excitation strategies are applied and discussed: identification from quasi-static poses and identification from accelerated continuous trajectories. Both poses and trajectories are optimized by different criteria and evaluated in comparison. Finally, the procedures are validated by experimental studies with reference payloads. In conclusion, both strategies allow accurate parameter identification within a fast procedure in an operational machine state.


Author(s):  
Pierre Ferrant ◽  
Lionel Gentaz ◽  
Bertrand Alessandrini ◽  
Romain Luquet ◽  
Charles Monroy ◽  
...  

This paper documents recent advances of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach, a method for simulating fully nonlinear wave-body interactions including viscous effects. The methods efficiently combines a fully nonlinear potential flow description of undisturbed wave systems with a modified set of RANS with free surface equations accounting for the interaction with a ship or marine structure. Arbitrary incident wave systems may be described, including regular, irregular waves, multidirectional waves, focused wave events, etc. The model may be fixed or moving with arbitrary speed and 6 degrees of freedom motion. The extension of the SWENSE method to 6 DOF simulations in irregular waves as well as to manoeuvring simulations in waves are discussed in this paper. Different illlustative simulations are presented and discussed. Results of the present approach compare favorably with available reference results.


2007 ◽  
Vol 19 (02) ◽  
pp. 117-127 ◽  
Author(s):  
Yang-Yao Niu ◽  
Ding-Yu Chang

In this work, a preliminary numerical simulation of the lower urinary system using Computational Fluid Dynamics (CFD) is performed. Very few studies have been done on the simulation of three-dimensional urine through the lower urinary system. In this study, a simplified lower urinary model with rigid body assumption is proposed. The distributions of urine flow velocity, wall pressure and shear stress along the urethra are simulated based on MRI scanned uroflowmetry of a normal female. Numerical results show that violent secondary flows appear on the cross surface near the end of the urethra when the inflow rate is increased. The oscillative variation of pressure and shear stress distributions are found around the beginning section of the urethra when flow rate is at the peak value.


1991 ◽  
Vol 113 (1) ◽  
pp. 34-41 ◽  
Author(s):  
G. J. Yoo ◽  
R. M. C. So ◽  
B. C. Hwang

Internal rotating boundary-layer flows are strongly influenced by large circumferential strain and the turbulence field is anisotropic. This is especially true in the entry region of a rotating pipe where the flow is three dimensional, the centrifugal force due to fluid rotation is less important, and the circumferential strain created by surface rotation has a significant effect on the turbulence field near the wall. Consequently, viscous effects cannot be neglected in the near-wall region. Several low-Reynolds-number turbulence closures are proposed for the calculation of developing rotating pipe flows. Some are two-equation closures with and without algebraic stress correction, while others are full Reynolds-stress closures. It is found that two-equation closures with and without algebraic stress correction are totally inadequate for this three-dimensional flow, while Reynolds-stress closures give results that are in good agreement with measurements over a wide range of rotation numbers.


Sign in / Sign up

Export Citation Format

Share Document