Sandwich Pipes With Strain Hardening Cementitious Composites (SHCC): Numerical Analyses

Author(s):  
Guangming Fu ◽  
Claudio Moura Paz ◽  
John Alex Hernández Chujutalli ◽  
Marcelo Igor Lourenço ◽  
Dirney Bessa de Lima ◽  
...  

Sandwich pipes (SP) combining high structural resistance with thermal insulation have been considered as an effective solution for using in ultra deepwater pipelines. Research has been conducted at COPPE/UFRJ with different core materials aiming to develop qualified pipes to transport deepwater oil and gas, especially for the pre-salt reservoirs in offshore Brazil. SPs using SHCC material are easy to manufacture and cost-effective. Moreover, the composition of the SHCC material can be controlled to achieve structural requirements along with good thermal insulation. Investigation on the buckling under external pressure and feasibility of installation by reel-lay method is required. This study presents numerical analysis of the collapse, collapse propagation and bending of sandwich pipes with different geometries. The Drucker-Prager formulation is employed for SHCC constitutive model and it is calibrated through small-scale tests. Model geometries match full scale specimens manufactured and tested in bending apparatus and hyperbaric chamber. Numerical/experimental correlation is also presented.

Author(s):  
Chen An ◽  
Menglan Duan ◽  
Segen F. Estefen

Sandwich pipes (SP) can be an effective solution for ultra-deepwater submarine pipelines, combining high structural resistance with thermal insulation. Most research work on this subject has been conducted at the subsea technology laboratory (LTS) of COPPE/UFRJ, with the aim of developing qualified pipes to transport deepwater oil and gas, especially for the pre-salt reservoirs at Offshore Brazil. This article reviewed most of the research done in recent years (2002–2012) on the buckling, collapse and buckle propagation of SP, which emphasized on the development of theoretical, experimental and numerical methods adopted to analyze such structural behavior of SP with different core materials. The main mechanical and thermal properties of the previously considered core materials were also given, together with the elastoplastic constitutive model for each material. The experimental and numerical results of collapse and buckle propagation under external pressure for SP were summarized. A general discussion of the mechanical failure modes of SP under external pressure was also provided. Besides, some suggestions for future work on collapse behavior and buckle propagation of SP were given.


Author(s):  
Luqman Raji ◽  
Zhigilla Y.I ◽  
Wadai J

Nigeria is one of developing countries in the world that experience shortage of electricity for her economic and social development. In Nigeria, most of the small-scale industries use diesel/petrol-based systems to generate their electricity. However, due to the cost fluctuation of oil and gas fuel, an alternative power generation should be considered. This paper targets to examine the cost analysis of system for supplying electricity to LUMATEC Aluminium products shop in Mubi, Adamawa state Nigeria. Hybrid Optimization Model for Electric Renewable (HOMER) is used as a tool for cost analysis. The scenario consider in this study was only stand-alone with battery system. Results revealed that the system have 10kW PV with cost of electricity (COE) of $0.312/kW. The initial capital cost and total net present cost (NPC) are $21.775 and $26.148 respectively, with payback period of 5.8years. In conclusion, this study provides the solution of power supply to the small-scale industries at cost effective and available throughout the year and it is feasible to solve the small-scale industries, rural and urban electricity supplying in this country (Nigeria). It is recommended that Nigerian Government & Law makers should promotes the use of standalone PV system for domestic and small-scale industry by providing financial assistance through soft loans, subsides and grants.


Author(s):  
Jing Cao ◽  
Yong Sha ◽  
Liwei Li

Flowline bundle system consisting of carrier pipe, sleeve pipe and internal flowlines offers smart solution for the infield transportation of oil and gas. Due to its features, flowline bundle offers a couple of advantages over conventional flowline in particular for cases where multi-flowlines and high thermal performance are of great interests. The main benefits and advantages of such system include excellent thermal performance to prevent wax formation and hydrates, multiple bundled flowlines, mechanical and corrosion protection, potential reuse, fabricated onshore, as well as towing installation without the requirement of professional pipelay vessel etc. Flowline bundle system can be a smart solution for certain applications, which can be safe and cost effective solution. The objective of this paper is to present the feasibility study of flowline bundle concept for the JZ 9-3 West Development project in Bohai Bay, Offshore China. This study covers engineering design, fabrication, and offshore towing installation. Design and installation results have been presented and the feasibility of flowline bundle concept has been fully demonstrated for the JZ 9-3 West field development.


Author(s):  
I. P. Pasqualino ◽  
B. C. Pinheiro ◽  
S. F. Estefen

Pipe-in-pipe systems are usually composed of two concentric metal pipes with or without an insulation material in the annulus region. Design requirements for ultra-deep water pipelines motivated the development of a new pipe-in-pipe conception in which the annulus is filled with materials that combine low cost, adequate thermal insulation properties and good mechanical resistance. The aim of this ongoing research project is to evaluate the structural performance of sandwich pipes with two different options of core material. Because of their wide availability and relatively low costs, the materials considered in this study were cement and polypropylene for the annulus, with pipes made of API X-60 grade steel. In this paper, a three-dimensional finite element model considering material and geometric nonlinear behavior was developed. This numerical model was used to perform a parametric study to determine the collapse envelopes of different pipe-in-pipe configurations under combined bending and external pressure. The collapse envelopes were compared with others obtained for steel pipelines of equivalent collapse pressure. The study showed that the pipe-in-pipe systems with either cement or polypropylene cores are feasible options to ultra-deep water pipelines fulfilling concomitantly both the requirements of structural resistance and thermal insulation.


Author(s):  
T. A. Netto ◽  
J. M. C. Santos ◽  
S. F. Estefen

Pipeline systems for deepwater applications must be designed to withstand operational loads and to give adequate thermal insulation to the hydrocarbon being transported. Sandwich pipelines composed by inner and outer steel pipes and either cement or polypropylene as core material are proposed here as viable alternatives to currently used pipe-in-pipe systems. The main advantage of these sandwich structures is that the core material and geometry can be selected so to provide both thermal insulation and good structural performance in conjunction with inner and outer pipes. In this paper, the structural behavior of such sandwich pipes under external pressure is studied through a series of small scale experiments and nonlinear numerical analyses based on the finite-element method.


Author(s):  
Ilson Paranhos Pasqualino ◽  
Flavio Antoun Netto ◽  
Theodoro Antoun Netto

Metal-composite pipes are feasible alternatives for deepwater applications where thermal insulation and structural behavior requirements must be met. They are composed of an inner metal pipe and an outer structural composite layer which act in combination to provide excellent structural strength and additional thermal insulation. In this work, the mechanical behavior of such pipes under external pressure is investigated through numerical analyses and experimental tests. Small scale models were tested under external pressure to calibrate a finite element based numerical model. The FE model incorporates nonlinear kinematics, progressive failure analyses of the composite layer, and metal elastic-plastic behavior. Unbounded interface between metal and composite was assumed through frictionless surface-based contact model in other to obtain a conservative estimate of the metal-composite pipe performance under external pressure.


Author(s):  
Baodong Wang ◽  
Hong Zhang ◽  
Xiaoben Liu ◽  
Lixin Xu ◽  
Yang Fu

Abstract Unbonded flexible pipe is widely used in the oil and gas industry for its good flexibility, especially in deepwater oil and gas transportation. And the fiber reinforced unbonded flexible pipe has excellent corrosion resistance and wear resistance. However, they are subjected to internal pressure, external pressure and tensile loads during the service process, which are important factors affecting the integrity and security of the flexible pipe. In this paper, the mechanical behaviors of an 8-inchs fiber reinforced unbonded flexible pipe used in offshore gas development which consists of internal layer, internal pressure reinforcement layers, anti-wear layers, external pressure armor, tensile reinforcement layers and outer sheath is investigated by numerical methods. A rigorous three-dimensional solid finite element model of flexible pipe that considers the real material parameters, structural nonlinearity as well as the nonlinear contact behavior was created. ABAQUS/Explicit quasi-static simulation is adopted to study the mechanical behaviors of the flexible pipe under combined load. And the accuracy of the simulation method for the fiber reinforced layers such as internal pressure layer is verified by comparing with the small-scale internal pressure burst test of 1-inch flexible pipe. The mechanical behavior of flexible pipe subjected to internal pressure, external pressure and tensile load was investigated in detail. Based on the contrastive analysis, some practical conclusions have been obtained which may be used for the practical design and production of flexible pipe. This study can be referenced for the applications of unbonded flexible pipe in marine oil and gas production.


Author(s):  
Mengzhou Li ◽  
Sujoy Sikdar ◽  
Lirong Xia ◽  
Ge Wang

Cheating prevention in online exams is often hard and costly to tackle with proctoring, and it even sometimes involves privacy issues, especially in social distancing due to the pandemic of COVID-19. Here we propose a low-cost and privacy-preserving anti-cheating scheme by programmatically minimizing the cheating gain. A novel anti-cheating scheme we developed theoretically ensures that the cheating gain of all students can be controlled below a desired level aided by the prior knowledge of students’ abilities and a proper assignment of question sequences. Furthermore, a heuristic greedy algorithm we developed can refine an assignment of questions from a cyclic pool of question sequences to efficiently reduce the cheating gain. Compared to the integer linear programming and min-max matching methods in a small-scale simulation, our heuristic algorithm provides results close to the optimal solutions offered by the two standard discrete optimization methods. Hence, our anti-cheating approach could potentially be a cost-effective solution to the well-known cheating problem even without proctoring.


2019 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Lindawati Lindawati

Reduction of food rations and shortages is one of the impacts of the increasing human population. Food sector industries then try to cope with the fast growing number of customers. Agribusiness sector gains its popularity in these recent years, including pig farm. The increase trend of animal farming industry is likely to bring increasing pollution problem unless effective treatment methods are used. The main problems related to the pig farm include odor nuisance and pig manure disposal. The existing land application of piggery wastewater is the traditional way to discharge the wastewater. This may yield in land and water contamination, due to the accumulation of unused nutrients by crop plant. A case study of a large commercial pig farm from Australia is proposed to apply in smaller scale in Indonesia. Operational strategies for the small-scale SBR (Sequencing Batch Reactor) treating piggery effluent were developed based on lab-scale experiments. Due to SBR characteristics, which are money-saving and space-saving, it is very suitable to be applied in urban area. An economic evaluation was made of various process options. The cost estimation showed that SBR is a cost effective process, allowing operational batches to be adjusted to reduce unnecessary aeration cost. A reduction in the aeration cost was achieved by shortening the batch time from 24-h to 8-h. A comparison of three different SBR options showed that smaller size reactors could be more flexible and cost effective when compared with the larger ones.


Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


Sign in / Sign up

Export Citation Format

Share Document