An Experimental Investigation of Wave Impact Loads on a Slender Horizontal Cylinder

Author(s):  
Joseph F. Haley ◽  
Chris Swan ◽  
Richard Gibson

This paper concerns the difficulties arising in the prediction of the impact loads associated with an extreme wave event. A new set of experimental observations are presented. These concern the impact loads arising on a slender horizontal cylinder located at varying elevations above the still water level. The experimental observations incorporate a wide range of wave forms. In each case, data is provided describing (i) the incident water surface profiles, (ii) the incident fluid velocities and (iii) the load components acting on the cylinder. Comparisons between the measured data and the classical impact load solutions confirm a number of important departures. In particular, it is shown that as the wave becomes very steep (approaching the breaking limit) the vector sum of the horizontal and vertical velocity components at the water surface may deviate significantly from the normal to the local water surface. In such cases it becomes unclear exactly what direction the impact force acts. The present data suggests that this is, in part, dependent on the rate of inundation of the body. Furthermore, the present results also show that if the direction of the force is correct modelled, the variations in the predicted loading (or slamming) coefficient are much reduced.

Author(s):  
Parisa Saboori ◽  
Ali Sadegh

While subarachnoid space (SAS) trabeculae play an important role in damping and reducing the relative movement of the brain with respect to the skull, thereby reducing traumatic brain injuries, their mechanical properties and modeling are not well established in the literature. A few studies, e.g., Zhang et al. (2002) and Xin Jin et al. (2008) have reported a wide range the elastic modulus of the trabeculae up to three orders of magnitudes. The histology of the trabeculae reveals a collagen based structure. Thus, a few investigators have estimated the mechanical properties of trabeculae based on collagen’s properties. The objective of this study is to determine the stress/strain changes in the brain as a function of the mechanical properties and modeling methodology of the trabeculae, when the loading and the boundary conditions of the model are kept the same. This study was performed through several modeling steps. A wide range of the mechanical properties of the trabeculae was employed and the transductions of blunt impact loads from the skull to the brain were determined. The mechanical properties of the SAS trabeculae were determined based on the validation of the models with experimental results of Sabet et al. (2009). The result indicated that when we use softer material properties for the trabeculae the meningeal layers absorb and damp the impact load. It is also concluded that the material properties of the trabeculae can be simulated by only tension element since the trabeculae buckles with minimal compressive load. Finally, an optimum material property of SAS was proposed.


Author(s):  
Thomas B. Johannessen ◽  
Øystein Lande ◽  
Øistein Hagen

For offshore structures in harsh environments, horizontal wave impact loads should be taken into account in design. Shafts on GBS structures, and columns on semisubmersibles and TLPs are exposed to impact loads. Furthermore, if the crest height exceeds the available freeboard, the deck may also be exposed to wave impact loads. Horizontal loads due to waves impacting on the structure are difficult to quantify. The loads are highly intermittent, difficult to reproduce in model tests, have a very short duration and can be very large. It is difficult to calculate these loads accurately and the statistical challenges associated with estimating a value with a prescribed annual probability of occurrence are formidable. Although the accurate calculation of crest elevation in front of the structure is a significant challenge, industry has considerable experience in handling this problem and the analysis results are usually in good agreement with model test results. The present paper presents a statistical model for the distribution of horizontal slamming pressures conditional on the incident crest height upwave of the structure. The impact load distribution is found empirically from a large database of model test results where the wave impact load was measured simultaneously at a large number of panels together with the incident crest elevation. The model test was carried out on a circular surface piercing column using long simulations of longcrested, irregular waves with a variety of seastate parameters. By analyzing the physics of the process and using the measured crest elevation and the seastate parameters, the impact load distribution model is made seastate independent. The impact model separates the wave impact problem in three parts: – Given an incident crest in a specified seastate, calculate the probability of the crest giving a wave impact load above a threshold. – Given a wave impact event above a threshold, calculate the distribution of the resulting peak load. – Given a peak load, calculate the distribution of slamming pressures at one spatial location. The development of the statistical model is described and it is shown that the model is appropriate for fixed and floating structures and for wave impact with both columns and the deck box.


2021 ◽  
Vol 22 (13) ◽  
pp. 6845
Author(s):  
Rebecca L. Pratt

The buzz about hyaluronan (HA) is real. Whether found in face cream to increase water volume loss and viscoelasticity or injected into the knee to restore the properties of synovial fluid, the impact of HA can be recognized in many disciplines from dermatology to orthopedics. HA is the most abundant polysaccharide of the extracellular matrix of connective tissues. HA can impact cell behavior in specific ways by binding cellular HA receptors, which can influence signals that facilitate cell survival, proliferation, adhesion, as well as migration. Characteristics of HA, such as its abundance in a variety of tissues and its responsiveness to chemical, mechanical and hormonal modifications, has made HA an attractive molecule for a wide range of applications. Despite being discovered over 80 years ago, its properties within the world of fascia have only recently received attention. Our fascial system penetrates and envelopes all organs, muscles, bones and nerve fibers, providing the body with a functional structure and an environment that enables all bodily systems to operate in an integrated manner. Recognized interactions between cells and their HA-rich extracellular microenvironment support the importance of studying the relationship between HA and the body’s fascial system. From fasciacytes to chronic pain, this review aims to highlight the connections between HA and fascial health.


2021 ◽  
Author(s):  
Daniel de Oliveira Costa ◽  
Julia Araújo Perim ◽  
Bruno Guedes Camargo ◽  
Joel Sena Sales Junior ◽  
Antonio Carlos Fernandes ◽  
...  

Abstract Slamming events due to wave impact on the underside of decks might lead to severe and potentially harmful local and/or global loads in offshore structures. The strong nonlinearities during the impact require a robust method for accessing the loads and hinder the use of analytical models. The use of computation fluid dynamics (CFD) is an interesting alternative to estimate the impact loads, but validation through experimental data is still essential. The present work focuses on a flat-bottomed model fixed over the mean free surface level submitted to regular incoming waves. The proposal is to reproduce previous studies through CFD and model tests in a different reduced scale to provide extra validation and to identify possible non-potential scale effects such as air compressibility. Numerical simulations are performed in both experiments’ scales. The numerical analysis is performed with a marine dedicated flow solver, FINE™/Marine from NUMECA, which features an unsteady Reynolds-averaged Navier-Stokes (URANS) solver and a finite volume method to build spatial discretization. The multiphase flow is represented through the Volume of Fluid (VOF) method for incompressible and nonmiscible fluids. The new model tests were performed at the wave channel of the Laboratory of Waves and Currents (LOC/COPPE – UFRJ), at the Federal University of Rio de Janeiro.


2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


Author(s):  
Anne M. Fullerton ◽  
Thomas C. Fu ◽  
Edward S. Ammeen

Impact loads from waves on vessels and coastal structures are highly complex and may involve wave breaking, making these changes difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and non-breaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident non-breaking and breaking waves on one face of a cube. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. A limited number of runs were made at low forward speeds, ranging from about 0.5 to 2 knots (0.26 to 1.03 m/s). The measurement cube was outfitted with a removable instrumented plate measuring 1 ft2 (0.09 m2), and the wave heights tested ranged from 8–14 inches (20.3 to 35.6 cm). The instrumented plate had 9 slam panels of varying sizes made from polyvinyl chloride (PVC) and 11 pressure gages; this data was collected at 5 kHz to capture the dynamic response of the gages and panels and fully resolve the shapes of the impacts. A Kistler gage was used to measure the total force averaged over the cube face. A bottom mounted acoustic Doppler current profiler (ADCP) was used to obtain measurements of velocity through the water column to provide incoming velocity boundary conditions. A Light Detecting and Ranging (LiDAR) system was also used above the basin to obtain a surface mapping of the free surface over a distance of approximately 15 feet (4.6 m). Additional point measurements of the free surface were made using acoustic distance sensors. Standard and high-speed video cameras were used to capture a qualitative assessment of the impacts. Impact loads on the plate tend to increase with wave height, as well as with plate inclination toward incoming waves. Further trends of the pressures and forces with wave characteristics, cube orientation, draft and face angle are investigated and presented in this paper, and are also compared with previous test results.


2012 ◽  
Vol 16 (2) ◽  
pp. 75
Author(s):  
Aulia Windyandari

Aulia Windyandari, in paper simulation model of development method for passenger savety evaluation of freefaal lifeboat explain that since the launching procedure of Freefall Lifeboat (FFL) may have an impact with the water surface, the occupant injury is possible be occured in the evacuation process of the offshore structures.  The FFL shock acceleration has been conducted by the impact force when the lifeboat entry the water surface. If the shock acceleration over the human conciousness allowance, the serious injury will be happened during the FFL launching.According to the conditions, the IMO regulations have standard for the acceptance criteria of FFL shock acceleration induced by water entry impact load. The results measurement of Combined Acceleration Ratio Index (CAR) or Combined Dynamic Response Ratio Index (CDRR) should be comply with the IMO index criteria.In this paper, the methodology of FFL acceleration response prediction by the simulation model analysis will be proposed. The simulation model will be developed by using LS-Dyna code. The Simplified Arbitratry Lagrangian Eulerian Coupling will be used to define the coupling analysis between the Lifeboats (Lagrangian elements) with Water Fluids (the Eulerian Elements)Keywords: Free Fall Lifeboat, Response Acceleration, Impact Load


Author(s):  
Kshitij P. Gawande ◽  
Phillip Wiseman ◽  
Alex Mayes

Whenever undesirable dynamic events occur within power plant, refinery, or process piping systems, specialty supports and restraints have the task of protecting the mechanical equipment and connecting piping from damaging loads and displacements. The array of components that may be affected include, but are not limited to, piping systems, pumps, valve assemblies, pressure vessels, steam generators, boilers, and heat exchangers. In particular, the dynamic events can be classified into two distinct types that originate from either internal events or external events. The internal dynamic load generating events include plant system start-up and shut-down, pressure surges or impacts from rapid valve closures such as steam and water hammer, boiler detonations, pipe rupture, and operating vibratory displacements that may be either low frequency or high frequency vibrations. The external dynamic load generating events include wind loads, earthquake, airplane impact to supporting structures and buildings, and explosions. Most of the aforementioned dynamic load generating events can be defined quite simply as impact loads, i.e., forces and moments that are applied over very short periods of time, for example, less than one second. While earthquake loads may be applied over a total time period of an hour or so, the peak loads and resulting displacements occur on a more sinusoidal basis of peak-to-peak amplitudes. One of the most common specialty restraint components utilized in the piping industry to absorb and transfer the dynamic load resulting from impact events is the hydraulic shock suppressor, otherwise known as the snubber. The snubber is a formidable solution to protecting plant piping systems and equipment from impact loading while not restricting the thermal displacements during routine operations. In the dynamic events that may be characterized by an impact type loading, snubbers provide an instantaneous, practically rigid, axial connection between the piping or other component to be secured and the surrounding structure whether it be concrete or steel (for example). In this way, the kinetic energy can be transmitted and harmlessly dissipated. In the vibratory environment, however, neither the impact load scenario nor the rapid translations are imposed upon snubbers, thereby presenting the competing intended application of the snubber to protect against impact loads versus, in many cases, the improper selection of the snubber to dampen vibratory (other than seismic) loads. The details of the hydraulic shock suppressor design are reviewed and discussed to exemplify why a case can and should be made against the use of snubbers in piping systems within an operating vibratory environment.


Author(s):  
Matthieu Ancellin ◽  
Laurent Brosset ◽  
Jean-Michel Ghidaglia

Understanding the physics of sloshing wave impacts is necessary for the improvement of sloshing assessment methodology based on sloshing model tests, for LNG membrane tanks on floating structures. The phase change between natural gas and liquefied natural gas is one of the physical phenomena involved during a LNG wave impact but is not taken into account during sloshing model tests. In this paper, some recent numerical and analytical works on the influence of phase change are summarized and discussed. For the impact of an ideally shaped wave, phase change influences two different steps of the impact in different ways: during the gas escape phase, phase change leads to a higher impact velocity; for entrapped gas pockets, phase change causes a reduction of the pressure in the gas pocket. However, this influence is quantitatively small. The generalization to more realistic wave shapes (including e.g. liquid aeration) should be the focus of future works.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Qixiang Yan ◽  
Zhixin Deng ◽  
Yanyang Zhang ◽  
Wenbo Yang

Impact loads generated by derailed trains can be extremely high, especially in the case of heavy trains running at high speeds, which usually cause significant safety issues to the rail infrastructures. In shield tunnels, such impact loads may not only cause the damage and deformation of concrete segments, but also lead to the failure of segmental joint bolts. This paper presents a numerical study on the failure behavior of segmental joint bolts in the shield tunnel under impact loading resulting from train derailments. A three-dimensional (3D) numerical model of a shield tunnel based on the finite element (FE) modelling strategy was established, in which the structural behavior of the segmental joint surfaces and the mechanical behavior of the segmental joint bolts were determined. The numerical results show that the occurrence of bolt failure starts at the joints near the impacted segment and develops along the travel direction of train. An extensive parametric study was subsequently performed and the influences of the bolt failure on the dynamic response of the segment were investigated. In particular, the proposed FE model and the analytical results will be used for optimizing the design method of the shield tunnel in preventing the failure of the joint bolts due to the impact load from a derailed HST.


Sign in / Sign up

Export Citation Format

Share Document