An Experimental Development to Characterise the Flow Phenomena at the Near-Wellbore Region

Author(s):  
M. Jalal Ahammad ◽  
Mohammad Azizur Rahman ◽  
Stephen D. Butt ◽  
Jahrul M. Alam

Abstract The understanding of rock characteristic and fluid flow behavior at the near-wellbore region is an important topic. Triaxial experiment setup can help to investigate these properties. In this research, a new triaxial experimental setup has been developed where the higher scale of the parameters such as higher reservoir pressure, and comparatively larger core sample can be used. High permeable synthetic porous samples are prepared to validate the device. The new triaxial experimental setup is validated with water as a base fluid. In the validation test, real samples and synthetic samples are used. First, flow in convergent direction is studied which represents as production at the in-situ condition. Then, the flow in divergent direction is examined that may represent the injection of fluid to enhance the hydrocarbon production. The near-wellbore flow phenomena are studied with real and synthetic samples. The results indicate that using this triaxial setup pressure drop and pressure buildup test can be explained. The new scientific setup is able to reduce the scale-up gap between laboratory data and field data to get actual reservoir flow phenomena.

Author(s):  
Antony N. Beris ◽  
Brian J. Edwards

This much-needed monograph presents a systematic, step-by-step approach to the continuum modeling of flow phenomena exhibited within materials endowed with a complex internal microstructure, such as polymers and liquid crystals. By combining the principles of Hamiltonian mechanics with those of irreversible thermodynamics, Antony N. Beris and Brian J. Edwards, renowned authorities on the subject, expertly describe the complex interplay between conservative and dissipative processes. Throughout the book, the authors emphasize the evaluation of the free energy--largely based on ideas from statistical mechanics--and how to fit the values of the phenomenological parameters against those of microscopic models. With Thermodynamics of Flowing Systems in hand, mathematicians, engineers, and physicists involved with the theoretical study of flow behavior in structurally complex media now have a superb, self-contained theoretical framework on which to base their modeling efforts.


Author(s):  
M. A. Kabir ◽  
C. Fred Higgs ◽  
Michael R. Lovell

Granular flow behavior is of fundamental interest to the engineering and scientific community because of the prevalence of these flows in the pharmaceutical, agricultural, food service, and powder manufacturing industries. Granular materials exhibit very complex behavior, oftentimes acting as solids and at other times as fluids. This dual nature leads to very complex and rich behavior, which is not yet well understood. Therefore, the present investigation introduces a new technique that can potentially be used to unveil the mystery of granular flow phenomena. To this end, advanced finite element modeling and simulation techniques have been applied to the study of the complex nature of granular flow. More specifically, the explicit dynamic code LS-DYNA has been utilized to gain an understanding of the complex flow nature and collision stresses of granules in a shear cell.


Author(s):  
A. Hergt ◽  
J. Klinner ◽  
J. Wellner ◽  
C. Willert ◽  
S. Grund ◽  
...  

The flow through a transonic compressor cascade shows a very complex structure due to the occuring shock waves. In addition, the interaction of these shock waves with the blade boundary layer inherently leads to a very unsteady flow behaviour. The aim of the current investigation is to quantify this behaviour and its influence on the cascade performance as well as to describe the occuring transonic flow phenomena in detail. Therefore, an extensive experimental investigation of the flow in a transonic compressor cascade has been conducted within the transonic cascade wind tunnel of DLR at Cologne. In this process, the flow phenomena were thoroughly examined for an inflow Mach number of 1.21. The experiments investigate both, the laminar as well as the turbulent shock wave boundary layer interaction within the blade passage and the resulting unsteady behaviour. The experiments show a fluctuation range of the passage shock wave of about 10 percent chord for both cases, which is directly linked with a change of the inflow angle and of the operating point of the cascade. Thereafter, RANS simulations have been performed aiming at the verification of the reproducibility of the experimentally examined flow behavior. Here it is observed that the dominant flow effects are not reproduced by a steady numerical simulation. Therefore, a further unsteady simulation has been carried out in order to capture the unsteady flow behaviour. The results from this simulation show that the fluctuation of the passage shock wave can be reproduced but not in the correct magnitude. This leads to a remaining weak point within the design process of transonic compressor blades, because the working range will be overpredicted. The resulting conclusion of the study is that the use of scale resolving methods such as LES or the application of DNS is necessary to correctly predict unsteadiness of the transonic cascade flow and its impact on the cascade performance.


Author(s):  
Arman Molki ◽  
Lyes Khezzar ◽  
Afshin Goharzadeh

This paper outlines a proposed experimental setup and image processing techniques using MATLAB for the characterization of the average dynamic behavior of the air/water mixture under the free surface of water penetrated by a plunging jet. The proposed setup focuses on the dynamics of air entrainment below the free surface and the identification of the major regimes related to the entrainment process of bubbles in water, namely: (a) no-entrainment, (b) incipient entrainment, (c) intermittent entrainment, and (d) continuous entrainment. The experimental setup allows students to observe the flow behavior below the free liquid surface and determine the penetration depth of the bubble plumes using image processing techniques in MATLAB. The focal point of the experiment is image analysis for qualitative and quantitative characterization of the bubble plume.


2001 ◽  
Vol 4 (04) ◽  
pp. 250-259
Author(s):  
K.T. Chambers ◽  
W.S. Hallager ◽  
C.S. Kabir ◽  
R.A. Garber

Summary The combination of pressure-transient and production-log (PL) analyses has proved valuable in characterizing reservoir flow behavior in the giant Tengiz field. Among the important findings is the absence of clear dual-porosity flow. This observation contradicts an earlier interpretation that the reservoir contains a well-connected, natural fracture network. Fracturing and other secondary porosity mechanisms play a role in enhancing matrix permeability, but their impact is insufficient to cause dual-porosity flow behavior to develop. Flow profiles measured with production logs consistently show several thin (10 to 30 ft) zones dominating well deliverability over the thick (up to 1,040 ft) perforation intervals at Tengiz. A comparison of PL results and core descriptions reveals a good correlation between high deliverability zones and probable exposure surfaces in the carbonate reservoir. Contrary to earlier postulations, results obtained from pressure-transient and PL data at Tengiz do not support rate-sensitive productivity indices (PI's). Inclusion of rate variations in reconciling buildup and drawdown test results addressed this issue. We developed wellbore hydraulic models and calibrated them with PL data for extending PI results to wells that do not have measured values. A simplified equation-of-state (EOS) fluid description was an important component of the models because the available black-oil fluid correlations do not provide reliable results for the 47°API volatile Tengiz oil. Clear trends in reservoir quality emerge from the PI results. Introduction A plethora of publications exists on transient testing. However, only a few papers address the issue of combining multidisciplinary data to understand reservoir flow behavior (Refs. 1 through 4 are worthy of note). We used a synergistic approach by combining geology, petrophysics, transient tests, PL's, and wellbore-flow modeling to characterize the reservoir flow behavior in the Tengiz field. Understanding this flow behavior is crucial to formulating guidelines for reservoir management. Permeability estimation from pressure-transient data is sensitive to the effective reservoir thickness contributing to flow. Unfortunately, difficulties associated with the calibration of old openhole logs, sparse core coverage, and a major diagenetic overprint of solid bitumen combine to limit the identification of an effective reservoir at Tengiz based on openhole log data alone. Consequently, PL's have been used to identify an effective reservoir in terms of its flow potential. A limitation of production logs is that they only measure fluid entering the wellbore and are not necessarily indicative of flow in the reservoir away from the well. Pressure data from buildup and drawdown tests, on the other hand, provide insights into flow behavior both near the well and farther into the reservoir. The combination of pressure-transient analysis using simultaneous downhole pressure and flow-rate data along with measured production profiles provides an opportunity to reconcile near-wellbore and in-situ flow behavior. Expansion of reservoir fluids along with formation compaction provides the current drive mechanism at Tengiz because the reservoir is undersaturated by over 8,000 psia. As the field is produced, reservoir stresses will increase in response to pressure decreases.5 Increased stresses can significantly reduce permeability if natural fractures provide the primary flow capacity in the reservoir. Wells producing at high drawdowns provide an opportunity to investigate the pressure sensitivity of fractures within the near-wellbore region. Early interpretations of pressure-transient tests at Tengiz uncovered a significant discrepancy between buildup and drawdown permeability, despite efforts to carefully control flow rates during the tests. Drawdown permeabilities typically exceeded the buildup results by 20 to 50%. Although this finding appears counterintuitive to the expectation that drawdowns (that is, higher stresses) would lead to lower permeability, it indicated a possible stress dependence on well deliverability. The method proposed by Kabir6 to reconcile differences between drawdown and buildup results proved useful in addressing this issue. The opportunities to collect PL and downhole pressure data at Tengiz are limited by mechanical conditions in some wells and by the requirement to meet the processing capacity of the oil and gas plant. On the other hand, accurate wellhead-pressure and flow-rate data are routinely available. Wellbore hydraulic calculations provide a basis for calculating flowing bottomhole pressures (FBHP's) with the available surface data. Calculated FBHP's can be combined with available reservoir pressure data to determine PI's for wells lacking bottomhole measurements. The ability to compute accurate fluid properties is critical in applying this approach. Unfortunately, the black-oil correlations routinely used in wellbore hydraulic calculations7–9 do not provide reliable results for the volatile Tengiz oil. We obtained good agreement between laboratory measurements of fluid properties and calculated values using a simplified EOS.10 Surface and bottomhole data collected during PL operations provide a basis for validating wellbore hydraulic calculations. Networks of natural fractures can dominate the producing behavior of carbonate reservoirs such as Tengiz. Early identification of fractured reservoir behavior is critical to the successful development of these types of reservoirs.11 We present an approach for resolving reservoir flow behavior by combining production profiles, pressure-transient tests, and wellbore hydraulic calculations. Furthermore, we discuss the PL procedures developed to allow acquisition of the data required for all three types of analyses in a single logging run. Field examples from Tengiz highlight the usefulness of this approach.


Author(s):  
Suresh Kumar Patel ◽  
Subrata Kumar Majumder

The packed bed columns with non-Newtonian liquid are increasing importance as a simple and inexpensive means of achieving yield of different chemical and biochemical processes though their hydrodynamic behavior is complex and not yet fully understood. In this article non-Newtonian flow behavior on frictional pressure was investigated in packed bed within a range of liquid velocity 0.004-0.04 m/s. The frictional pressure loss in non-Newtonian liquid system has been analyzed by modified Ergun equation. The modification of the Ergun equation is incorporated with the flow behavior index of non-Newtonian liquid. The degree of frictional pressure loss decreases with increase in flow behavior index. A correlation has been developed to interpret the degree of effect on the frictional pressure loss. The correlation may be useful for further understanding and scale-up of the packed bed column for its industrial application.


1981 ◽  
Vol 54 (2) ◽  
pp. 266-276 ◽  
Author(s):  
N. Nakajima

Abstract In recent years, the process of mixing elastomers with carbon black has been the subject of various studies. In particular, the process involving the use of the internal mixer has been examined systematically, and Palmgren has published a general review on the state of the art. A method was proposed for the control and scale-up which is based on the energy input for mixing; then, properties were evaluated as a function of the mixing energy. This method was used for evaluating the performance of different types of elastomers and carbon blacks in the internal mixer. Although the method represents significant progress in understanding the mixing process and is of practical importance, it still treats the mixer essentially as a “black box”. In order to elucidate the mechanism of mixing, visualization must be performed. One type is static visualization, in which the machine is stopped at an intermediate stage and the contents are taken out for inspection. Another is dynamic visualization through transparent walls of a mixer. These observations enable us to construct a model for the deformation-flow behavior of materials and a model for the mixing mechanism. These models, in turn, guide us to laboratory measurements of the material behavior which are pertinent to the mixing mechanisms. With respect to mill processability, Tokita and White classified raw material behavior into four regions, which are functions of a given material and dependent on the time scale, temperature, and magnitude of strain. This classification is applicable not only to the millability of the raw elastomer but also to the ease of mixing with carbon black. This interpretation may be extended to the processability of the material in the internal mixer.


Author(s):  
Ravi Arora ◽  
Eric Daymo ◽  
Anna Lee Tonkovich ◽  
Laura Silva ◽  
Rick Stevenson ◽  
...  

Emulsion formation within microchannels enables smaller mean droplet sizes for new commercial applications such as personal care, medical, and food products among others. When operated at a high flow rate per channel, the resulting emulsion mixture creates a high wall shear stress along the walls of the narrow microchannel. This high fluid-wall shear stress of continuous phase material past a dispersed phase, introduced through a permeable wall, enables the formation of small emulsion droplets — one drop at a time. A challenge to the scale-up of this technology has been to understand the behavior of non-Newtonian fluids under high wall shear stress. A further complication has been the change in fluid properties with composition along the length of the microchannel as the emulsion is formed. Many of the predictive models for non-Newtonian emulsion fluids were derived at low shear rates and have shown excellent agreement between predictions and experiments. The power law relationship for non-Newtonian emulsions obtained at low shear rates breaks down under the high shear environment created by high throughputs in small microchannels. The small dimensions create higher velocity gradients at the wall, resulting in larger apparent viscosity. Extrapolation of the power law obtained in low shear environment may lead to under-predictions of pressure drop in microchannels. This work describes the results of a shear-thinning fluid that generates larger pressure drop in a high-wall shear stress microchannel environment than predicted from traditional correlations.


Author(s):  
B. Stephan ◽  
H. E. Gallus ◽  
R. Niehuis

A multistage turbomachine has inherently unsteady flow fields due to the relative motion between rotor and stator airfoils, which lead to viscous and inviscid interactions between the blade rows. Additionally, the radial clearance between casing and rotor strongly influences the 3D flow field and the loss generation in turbomachines. The objective of the presented study is to investigate the effects of tip clearance on secondary flow phenomena and, in consequence, on the performance of a 1-1/2 stage axial turbine. The low aspect ratio of the blades and their prismatic design leads to a high degree of secondary flows and three-dimensionality. Extended measurements of the flow field behind each blade row with pneumatic and hotwire probes have been conducted for three different tip clearances. Experimental results reveal significant change of flow behavior and turbine performance with increasing tip clearance.


1996 ◽  
Vol 118 (4) ◽  
pp. 749-755 ◽  
Author(s):  
A. Glahn ◽  
M. Kurreck ◽  
M. Willmann ◽  
S. Wittig

The present paper deals with oil droplet flow phenomena in aero engine bearing chambers. An experimental investigation of droplet sizes and velocities utilizing a Phase Doppler Particle Analyzer (PDPA) has been performed for the first time in bearing chamber atmospheres under real engine conditions. Influences of high rotational speeds are discussed for individual droplet size classes. Although this is an important contribution to a better understanding of the droplet flow impact on secondary air/oil system performance, an analysis of the droplet flow behavior requires an incorporation of numerical methods because detailed measurements as performed here suffer from both strong spatial limitations with respect to the optical accessibility in real engine applications and constraints due to the extremely time-consuming nature of an experimental flow field analysis. Therefore, further analysis is based on numerical methods. Droplets characterized within the experiments are exposed to the flow field of the gaseous phase predicted by use of our well-known CFD code EPOS. The droplet trajectories and velocities are calculated within a Lagrangian frame of reference by forward numerical integration of the particle momentum equation. This paper has been initiated rather to show a successful method of bearing chamber droplet flow analysis by a combination of droplet sizing techniques and numerical approaches than to present field values as a function of all operating parameters. However, a first insight into the complex droplet flow phenomena is given and specific problems in bearing chamber heat transfer are related to the droplet flow.


Sign in / Sign up

Export Citation Format

Share Document