Hybrid Verification of a Deepwater FPSO Using Truncated Model Tests and Numerical Simulations

2021 ◽  
Author(s):  
Xiangbo Liu ◽  
Ching Theng Liong ◽  
Nitesh Kumar ◽  
Kie Hian Chua ◽  
Allan Ross Magee ◽  
...  

Abstract This paper presents verification of a deep water FPSO with a semi-taut mooring system using model tests and numerical modelling commonly referred to as the hybrid method. The vessel under investigation is a FPSO of 310m in length and 47m in beam with an internal turret mooring system of 12 lines in 2000m water depth. Two configurations of the mooring systems i.e. inline and bisecting are investigated for sea-states up to 1000yr return period. A full depth mooring system has been developed for the FPSO and model tests will be carried out to verify the model. Due to limitations to the size of the model basins, the model tests will be carried out for a truncated mooring setup. Non-linear horizontal stiffness of a single mooring line and the complete mooring system with truncation is compared to that of the existing full depth mooring system. Discrepancies in the vertical forces due to truncation of line length will be discussed in the paper. A numerical model of the truncated set-up will be calibrated using model test results.

Author(s):  
J. L. Cozijn ◽  
T. H. J. Bunnik

The effect of the mooring loads on floator motions can be significant for small water plane are floaters like CALM buoys. Not only does the mooring system contribute to the static restoring force components, but the dynamic behaviour of the mooring lines also affects the inertia and damping of the moored CALM buoy. The results from model tests with a moored CALM buoy were compared with the results from two series of time-domain computer simulations. First, fully dynamic coupled simulations were carried out, in which the interaction between the floater motions and the dynamic mooring line loads was modelled for all 6 modes of motion. Second, quasi-static simulations were carried out, in which only the (non-linear) static restoring force characteristics of the mooring system were taken into account. The comparison of results from the simulations and the model tests clearly indicates that the fully dynamic coupled simulations show a much better correspondence with the model test results than the quasi-static simulations. It is concluded that for the simulation of the behavior of a moored CALM buoy in waves a fully dynamic coupled mooring analysis is essential.


Author(s):  
Yihua Su ◽  
Jianmin Yang ◽  
Longfei Xiao ◽  
Gang Chen

Modeling the deepwater mooring system in present available basin using standard Froude scaling at an acceptable scale presents new challenges. A prospective method is to truncate the full-depth mooring lines and find an equivalent truncated mooring system that can reproduce both static and dynamic response of the full-depth mooring system, but large truncation arise if the water depth where the deepwater platform located is very deep or the available water depth of the basin is shallow. A Cell-Truss Spar operated in 1500m water depth is calibrated in a wave basin with 4m water depth. Large truncation arises even though a small model scale 1:100 is chosen. A series of truncated mooring lines are designed and investigated through numerical simulations, single line model tests and coupled wave basin model tests. It is found that dynamic response of the truncated mooring line can be enlarged by using larger diameter and mass per unit length in air. Although the truncated mooring line with clump presents a “taut” shape, its dynamic characteristics is dominated by the geometry stiffness and it underestimates dynamic response of the full-depth mooring line, even induces high-frequency dynamic response. There are still two obstacles in realizing dynamic similarity for the largely truncated mooring system: lower mean value of the top tension of upstream mooring lines, and smaller low-frequency mooring-induced damping.


Author(s):  
Mehernosh Irani ◽  
Lyle Finn

An extensive model test program was conducted to explore the effectiveness of alternate strake designs to reduce Truss Spar VIV response. Different strake configurations were tested to minimize VIV response. The paper presents results of the model tests. The model test set-up is described, important parameters that are modeled (including hull and truss geometry, strake configuration, mass and mooring properties) and considerations of instrumentation and test methodology are discussed. The paper also describes the analysis of the test results and shows the effectiveness of new strake design. The present results are compared with VIV response of existing Truss Spars with conventional strake design.


Author(s):  
Jiawen Li ◽  
Qiang Zhang ◽  
Jiali Du ◽  
Yichen Jiang

Abstract This paper presents a parametric design study of the mooring system for a floating offshore wind turbine. We selected the OC4 DeepCwind semisubmersible floating wind turbine as the reference structure. The design water depth was 50 m, which was the transition area between the shallow and deep waters. For the floating wind turbine working in this water area, the restoring forces and moments provided by the mooring lines were significantly affected by the heave motion amplitude of the platform. Thus, the mooring design for the wind turbine in this working depth was different from the deep-water catenary mooring system. In this study, the chosen design parameters were declination angle, fairlead position, mooring line length, environmental load direction, and mooring line number. We conducted fully coupled aero-hydro dynamic simulations of the floating wind turbine system in the time domain to investigate the influences of different mooring configurations on the platform motion and the mooring tension. We evaluated both survival and accidental conditions to analyze the mooring safety under typhoon and mooring fail conditions. On the basis of the simulation results, this study made several design recommendations for the mooring configuration for floating wind turbines in intermediate water depth applied in China.


Author(s):  
L. J. Kemp ◽  
W. J. Otto ◽  
O. J. Waals

Abstract Aviation has a significant impact on the global emission of greenhouse gasses. On the Northern Atlantic route alone there are over 2,500 crossings daily. This illustrates the high demand for connecting people. It is expected that this demand will only increase in the future, which will increase the emissions due to aviation even further. An alternative way for connecting people can be the hyperloop, which obtains comparable speeds while using a fraction of the energy. For intercontinental connections a tunnel would be necessary. In this study, a conceptual design of a mid-water floating hyperloop tunnel is made and tested on model scale at MARIN. In the present paper the results are discussed of model tests on a mid-water floating tunnel in Atlantic storm conditions at various wave directions and tunnel depths. The conceptual design of the tunnel is based on (nearly) available technology. One kilometer tunnel segments with a diameter of 11 m are connected to construct a tunnel length of > 5,000 km. Model basin tests are performed on scale 1:110, where a scale model of 140 m length is tested. The tunnel is designed as a neutral buoyant tunnel to reduce complexity and costs for the mooring system. The motions, deformations and mooring line tensions for the tunnel segments are measured by force transducers, accelerometers and an optical measurement system. Due to flexibility of the slender tunnel segments in combination with a soft mooring system, the tunnel tends to following the incoming waves for certain tunnel depths and wave directions. Only small motions and deformations are allowed for a hyperloop capsule to travel on high speed. The conceptual tests show first results on tunnel depth, structural and geometrical design of an hyperloop tunnel and mooring system.


Author(s):  
Radboud R. T. van Dijk ◽  
Arjan Voogt ◽  
Paul Fourchy ◽  
Saadat Mirza

Since 1996 Spars have been used as production platform in the Gulf of Mexico. Spar Vortex Induced Motions (VIM) in strong currents like the hurricane and loop currents are an important consideration for the design of the mooring system and risers. This is important for the extreme offsets as well as fatigue in risers and the mooring system. This paper compares the VIM behavior of a truss Spar in sheared currents, like the Hurricane current in the Gulf of Mexico, with tow test results. Experiments have been carried out on a scaled model in both a complete mooring system and in a towing set-up with a simplified horizontal mooring. The Spar model consists of a hard tank with removable helical strakes, a truss section and a square soft tank. The results of this model test program show that both the choice of the mooring system and current profile have a significant influence on the VIM response of the Spar. The paper discusses the results of this research and also addresses important issues and considerations for VIM model tests.


Author(s):  
Mehernosh Irani ◽  
Lyle Finn

The state-of-the art in model testing for Vortex Induced Vibrations (VIV) of Spars is presented. Important issues related to Spar VIV model testing are highlighted. The parameters that need to be modeled including hull geometry, strake configuration, mass and mooring properties and, considerations of test set-up and instrumentation are discussed. Results are presented from model tests of an as-built Spar deployed in the Gulf of Mexico. It is shown that the model test results compare well with the VIV responses measured in the field.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8303
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chengyuan Wang ◽  
Yuangang Tu ◽  
Zhenqing Liu

Floating wind turbine vibration controlling becomes more and more important with the increase in wind turbine size. Thus, a novel three-bifurcated mooring system is proposed for Spar-type floating wind turbines. Compared with the original mooring system using three mooring lines, three-bifurcated sub-mooring-lines are added into the novel mooring system. Specifically, each three-bifurcated sub-mooring-line is first connected to a Spar-type platform using three fairleads, then it is connected to the anchor using the main mooring line. Six fairleads are involved in the proposed mooring system, theoretically resulting in larger overturning and torsional stiffness. For further improvement, a clump mass is attached onto the main mooring lines of the proposed mooring system. The wind turbine surge, pitch, and yaw movements under regular and irregular waves are calculated to quantitatively examine the mooring system performances. A recommended configuration for the proposed mooring system is presented: the three-bifurcated sub-mooring-line and main mooring line lengths should be (0.0166, 0.0111, 0.0166) and 0.9723 times the total mooring line length in the traditional mooring system. The proposed mooring system can at most reduce the wind turbine surge movement 37.15% and 54.5% when under regular and irregular waves, respectively, and can at most reduce the yaw movement 30.1% and 40% when under regular and irregular waves, respectively.


2000 ◽  
Vol 46 (153) ◽  
pp. 188-196 ◽  
Author(s):  
Brian Hanson ◽  
Roger LeB. Hooke

AbstractEmpirical data suggest that the rate of calving of grounded glaciers terminating in water is directly proportional to the water depth. Important controls on calving may be the extent to which a calving face tends to become oversteepened by differential flow within the ice and the extent to which bending moments promote extrusion and bottom crevassing at the base of a calving face. Numerical modelling suggests that the tendency to become oversteepened increases roughly linearly with water depth. In addition, extending longitudinal deviatoric stresses at the base of a calving face increase with water depth. These processes provide a possible physical explanation for the observed calving-rate/water-depth relation.


2021 ◽  
Author(s):  
Craig R Gage ◽  
Pierre F Liagre ◽  
Caspar N Heyl ◽  
Cesar Del Vecchio

The Perdido platform is a spar located in a water depth of 7,825 feet in the Alaminos Canyon Block 857in the Gulf of Mexico. The mooring system consists of nine mooring lines in three groups of three, spacedapproximately 120 degrees apart between each group. Each mooring line is composed of a platform chain,a multi-segment polyester rope including a 120 feet long test insert at the top, a ground chain, a pile chainand other associated connectors. The mooring lines are connected to suction piles. The Minimum BreakStrength for the Perdido polyester mooring line is 4,000 kips. Installation of the spar hull was completed inSeptember 2008 and the topsides was set in March 2009. The spar and its mooring system were originallydesigned for a twenty (20) year life. On May 4, 2019, mooring line # 6 (ML6) was contacted by a marine vessel down line and was severed.Contact occurred along the polyester test insert. A recovery effort was planned, and the mooring line wasreplaced in early June. The original ML6 was recovered from the seafloor on June 4, 2019 as a part of thatcampaign and submitted to an initial inspection. This paper is not intended to go into either the cause of the incident or the replacement of ML6 but willlook to the inspection of the recovered mooring line and explore its suitability for reuse. Initial inspection ofthe lines suggested minimal damage to the polyester rope segments and raised questions to the impacts of 10years of use. Testing was envisioned as a learning opportunity for the impact of service on polyester mooringand was reinforced by the potential cost savings that could be attained though reuse. A methodology wasdeveloped, supported by initial inspections and a suite of testing was performed. The results of these testsare presented in the following, along with a proposed process for assessing and considering reuse of a linefollowing a drop. Additionally, conclusions will be shared for the process, the results, and the potentialramifications for the industry.


Sign in / Sign up

Export Citation Format

Share Document