Transfer Cask Assembly: Onsite Transfer of K-Basin Fuel at Hanford

Author(s):  
Donald A. Jensen ◽  
Andrew T. Kee ◽  
Robert A. Johnson ◽  
Philip W. Noss

Packaging Technology, Inc. was awarded a contract for the design and fabrication of a unique 18.5-ton transportation system to be used on-site at Hanford, WA. Unique aspects include rectangular cask geometry, solid 7”-thick stainless steel construction, hinged lid with remotely operable quick release locking mechanism. The lid maintains shielding and material confinement integrity after hypothetical accident conditions, and is equipped with a hydrogen venting system. This paper presents how the project requirements were translated into a successful design, and includes a brief discussion of a confirmation test program.

Author(s):  
John J. Friel

Committee E-04 on Metallography of the American Society for Testing and Materials (ASTM) conducted an interlaboratory round robin test program on quantitative energy dispersive spectroscopy (EDS). The test program was designed to produce data on which to base a precision and bias statement for quantitative analysis by EDS. Nine laboratories were sent specimens of two well characterized materials, a type 308 stainless steel, and a complex mechanical alloy from Inco Alloys International, Inconel® MA 6000. The stainless steel was chosen as an example of a straightforward analysis with no special problems. The mechanical alloy was selected because elements were present in a wide range of concentrations; K, L, and M lines were involved; and Ta was severely overlapped with W. The test aimed to establish limits of precision that could be routinely achieved by capable laboratories operating under real world conditions. The participants were first allowed to use their own best procedures, but later were instructed to repeat the analysis using specified conditions: 20 kV accelerating voltage, 200s live time, ∼25% dead time and ∼40° takeoff angle. They were also asked to run a standardless analysis.


1971 ◽  
Vol 93 (1) ◽  
pp. 277-286
Author(s):  
T. Walker

For the Instrument Engineer involved in the design of mechanisms that transmit power under boundary lubricated conditions, little information is available on which to base fine pitch gear load capacity and life. This paper discusses a gear test program and the development of a rating formula for the surface loading of these gears, and in particular those made from stainless steel and aluminum and stocked by precision gear manufacturers.


1967 ◽  
Vol 4 (01) ◽  
pp. 537-557
Author(s):  
W. A. Fritz ◽  
T. P. Tursi

This paper describes the supercharged steam-generating cycle as currently employed in the U. S. Navy. In this cycle gas pressure in the boiler varies with load to a design peak of five atmospheres. The boiler receives its air for combustion from an air compressor which is powered by boiler exhaust gases expanding through a gas turbine. A historical background of the cycle and its components follows. Since a number of systems of the supercharged type have been and are being subjected to test at the Naval Boiler and Turbine Laboratory, the components of the systems, with particular emphasis on the boilers, are described. Advantages and disadvantages of the system are detailed and evaluated. The conclusion is that advantages are significant and that suspected problems or disadvantages do not need to exist if it is understood that the supercharged steam generator is regarded as not just another boiler, but rather as a precision piece of equipment. The test program at the Naval Boiler and Turbine Laboratory is defined as to scope and objectives. Test results are discussed and modifications required as a result of tests are described. Finally, there is a short review of shipboard operating experience to the present time. A major point developed is that the introduction of a new type boiler to the Navy's Fleet required an RDT&E effort, a full-scale test program, a new appreciation of the art of boiler design and manufacture, and a realistic and well-defined training program, plus the development of new ancillary equipment. The most important of the other equipments required is, of course, a compact and reliable supercharger set (air compressor and gas turbine) to provide air for combustion. The successful design of a compact supercharger set is the key to the use of the supercharged steam cycle.


Author(s):  
Bruce (Bart) Slimp ◽  
Mick Papp ◽  
Phuong H. Hoang

A major milestone in 2003 on the Big Rock Point (BRP) decommissioning project involved shipping the Reactor Vessel (RV) in a steel cask for burial. The Reactor Vessel Transport System (RVTS) cask was a sealed integral container, which provided necessary radiological shielding and containment of radioactive waste for shipping and disposal. The RVTS, using the provisions of the ASME BPVC Section III, Subsection NB, was designed as a Type B package in accordance with the requirements of 10 CFR Part 71. This included meeting Normal Condition of Transport (NCT) and the Hypothetical Accident Conditions (HAC) loading per 10 CFR 71, Regulatory Guide 7.6, “Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels,” Regulatory Guide 7.8, “Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material” and Regulatory Guide 7.11, “Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Maximum Wall Thickness of 4 Inches.” The RVTS was designed to withstand accelerations and shocks postulated during highway and rail transit using guidelines from the Association of American Railroads (AAR) and ANSI N14.2. The design analysis methodology, fabrication process and transportation planning for the Big Rock RVTS Cask are presented in this paper.


2020 ◽  
Vol 60 (2) ◽  
pp. 598
Author(s):  
M. Brameld ◽  
S. Thomas ◽  
G. S. Malab

External pitting corrosion has been a long standing issue for stainless steel pressure equipment systems on Woodside offshore facilities. Experience has shown that this pitting cannot be effectively managed by inspection and, as a result, the current policy is that piping replacement should be planned once the presence of significant pitting corrosion has been identified. All Woodside offshore facilities have 316-grade stainless steel pressure equipment which is experiencing active external corrosion pitting to varying degrees. This represents the potential for hundreds of millions of dollars in piping replacement across the company. STOPAQ is an established product for the mitigation of external corrosion in carbon steel equipment however, it has not previously been used at Woodside on stainless steel equipment to address pitting corrosion. Through collaboration with the Woodside Future Laboratory at Monash University, Materials and Corrosion Engineering, Woodside Energy Limited has challenged the old established theory regarding the mechanism of pitting in stainless steel and a test program has been devised to validate the new way of thinking, which postulates that elimination of moisture and oxygen from the pits, by the application of an impervious layer like STOPAQ, will stifle the corrosion reaction and arrest the pitting. A recently completed test program at Monash which utilised computed tomography (CT) scanning, to very accurately determine the volume of corrosion pits, has confirmed that the application of STOPAQ to pitted stainless steel is very effective at mitigating this type of corrosion.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
William Kyffin ◽  
David Gandy ◽  
Barry Burdett

Abstract Hot isostatic pressing (HIP) of type 316 L stainless steel powder has been an established manufacturing practice for more than 25 years in the oil and gas sector and more recently in the naval defense sector. To demonstrate the capability of the powder metallurgy HIP (PM/HIP) for nuclear power applications, a systematic study of 316 L commercial powder production, encapsulation/consolidation providers, and selected HIP parameters was undertaken by the Nuclear AMRC in collaboration with the Electric Power Research Institute (EPRI). In this study, the 316 L powder specification limited the oxygen content of the powder to under 130 parts per million (ppm), which reflects the improvements that commercial powder suppliers have been making over the past decade to ensure greater powder cleanliness. The test program assessed powder supply, HIP service provider, and HIP sustain time. Excellent test results were achieved across the full range of variables studied with all billets meeting the specification requirements of ASTM A988 and additional requirements imposed based on nuclear manufacturing standards. Significantly, the study demonstrated the robustness of the PM/HIP supply chain, as material produced via differing HIP service providers resulted in very consistent material properties across the destructive test program. Furthermore, no significant difference in material properties was noted for material HIP between 2 and 8 h hold time, suggesting that the HIP process window is large. Both these results are significant from an end-user standpoint as they highlight the uniformity of the process through the full manufacturing cycle from powder procurement to destructive testing. Despite all material passing specification requirements, some property variation was noted for differing powder suppliers. Considering the systematic approach, this was attributed to powder composition, with both low oxygen and high nitrogen contents contributing to improvements in Charpy impact strength and tensile strength, respectively.


Author(s):  
Jeffrey G. Arbital ◽  
Paul T. Mann

The Department of Energy (DOE) has been shipping university reactor fuels and other fissile materials in the 110-gallon Department of Transportation (DOT) Specification 6M container for over 20 years. The DOT 6M container has been the workhorse for many DOE programs. However, packages designed and used according to the Specification 6M (U. S. Code of Federal Regulations, 49 CFR 178.354; 2003) do not conform to the latest package safety requirements in 10 CFR 71, especially performance under hypothetical accident conditions. For that reason, the 6M specification containers are being terminated by the DOT. Packages designed to the 6M specification will no longer be allowed for in-commerce shipments after October 1, 2008. To meet on-going transportation needs, DOE evaluated several different concepts for replacing the 110-gallon 6M. After this evaluation, DOE selected the Y-12 National Security Complex for the project. The new Y-12 container, designated the ES-4100 shipping container, will have a capacity of four times the current 6M and will be certified by the Nuclear Regulatory Commission (NRC). The ES-4100 project began in September 2006 and prototypes of the new container are now being fabricated. Details on the design features and the upcoming regulatory testing of this new container are discussed in this paper.


Author(s):  
Woo-Seok Choi ◽  
Sanghoon Lee ◽  
Kyoung-Sik Bang ◽  
Ju-Chan Lee ◽  
Ki-Seog Seo

During safety assessments of transport packages, cumulative damages are naturally accumulated for assessments performed using physical tests specimens. However, the cumulative damages are not as easily accounted when assessments are by numerical simulations. While analysts are comfortable with simulating packages for single events, it is not yet common practice to incorporate the effect handed over from a former event to the next, in a series of sequential load events. Thus, many numerical simulations in SAR (Safety Analysis Report) represent just a single event in the series of sequential event comprising the required accident condition. These single event numerical simulations are then based on initial conditions different from the analogous physical test specimen, which could contribute to a growing disparity in results between assessments by physically testing compared to numerical simulation. The reason why analyses do not consider the cumulative damage is difficulties in delivering the final result of the previous analysis to the current analysis. The hypothetical accident conditions described in the IAEA regulations include drop, puncture, fire, and water immersion conditions, which should be sequentially simulated. There can be cumulative damage between two accident conditions, such as drop and puncture, puncture and fire, and so forth. In this study, as the first step to consider cumulative damage, an analysis technology to perform a puncture analysis incorporating the final response field from a prior drop analysis is proposed. The necessity and validity of the proposed analysis technology are evaluated by a comparison with the results obtained by performing each analysis independently.


Sign in / Sign up

Export Citation Format

Share Document